\(\left(\frac{2}{11.13}+\frac{2}{13.15}+\frac{2}{15.17}+\frac{2}{17.19}+\frac{2}{19.21}\right).462-x=19\)
tính nhanh
. là dấu nhân
\(\frac{2}{11.13}+\frac{2}{13.15}+\frac{2}{15.17}+...+\frac{2}{97.99}\)
1.tìm x
a,(\(\frac{2}{11.13}\)+\(\frac{2}{13.15}\)+\(\frac{2}{15.17}\)+\(\frac{2}{17.19}\)+\(\frac{2}{19.21}\)).462-x=19
b,19,96+4,19-24,15:(x:\(\frac{1}{4}\)-\(\frac{1}{4}\))=23,15
c,7,2:[ (0,6-x+8):20+59].0,12
Các bạn giải rõ ràng giúp mình nhé
thank you!
x-\(\left(\frac{20}{11.13}+\frac{20}{13.15}+\frac{20}{15.17}+...+\frac{20}{53.55}\right)=\frac{3}{11}\)
\(\frac{7}{4}x.\left(\frac{33}{12}+\frac{3333}{2020}+\frac{333333}{303030}+\frac{33333333}{42424242}\right)=22\)
\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+\frac{1}{15}+...+\frac{2}{x\left(x-1\right)}=\frac{2007}{2009}\)
\(\left(\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}+\frac{1}{256}\right).x=1\)
Tìm x , biết
a) { x + 1/2 } + { x + 1/4 } + { x + 1/8 } + { x + 1/16 } = 1
b) x - 20/11.13 - 20/13.15 - ... - 20/53.55 = 3/11
Dấu . là dấu nhân các bạn nhé
7/4 - x . 3/4 = 5/19
x : 5/4 = 5/19
[ x + 3/4 ] . 5/7 = 10/9
12/5 : x + 4/3 = 3 2/3
x. 4/5 : 2 = 6/7
x + 20/11.13 + 20/13.15 + 20/15 . 17 + ... + 20/53.55 = 2/4
A=\(\frac{2}{1.3}\)+\(\frac{2}{3.5}\)+\(\frac{2}{5.7}\)+.......+\(\frac{2}{13.15}\)+\(\frac{2}{15.7}\)
B=\(\frac{4}{1.3}\)+\(\frac{4}{3.5}\)+.......+\(\frac{4}{9.11}\)+\(\frac{4}{11.13}\)
Tìm x
a) [(3.x-3/5):0,75].1/2/3+1/3=1
b) 1999.2001-1/1998+1999.2000 . 7/5.x=1
c) 11,13 + 13,15 + 15,17 + ... +31,33 = 5.x+11,13
d) (x+1,75):0,12=1+2-3+4-5+6- ... +118-119+120
e) (2/11.13 + 2/13.15 + ... + 2/19.21 ) . 462 - [2,04 : ( x + 1,05 ) ] : 0,12 = 11,5
(x+2)+(x+4)+(x+6)+...+(x+100)=6000
1+2+3+4+...+x=15
x-(\(\frac{20}{11.13}\)+ \(\frac{20}{13.15}\)+\(\frac{20}{15.17}\)+...+\(\frac{20}{53.55}\))=\(\frac{3}{11}\)
\(\frac{7}{4}\)x. (\(\frac{33}{12}\)+ \(\frac{3333}{2020}\)+ \(\frac{333333}{303030}\)+ \(\frac{33333333}{42424242}\)) = 42
\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+\frac{1}{15}+...+\frac{2}{x\left(x-1\right)}\)= \(\frac{2007}{2009}\)
\(\left(\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{28}+\frac{1}{256}\right)\).x=1