Ta có: 10n + 18n - 55
= 10n - 1 - 9n + 27n - 54
= 999...9 - 9n + 27.(n - 2)
(n c/s 9)
= 9.(111...1 - n) + 27.(n - 2)
(n c/s 1)
Vì 1 số và tổng các chữ số của nó có cùng số dư trong phép chia cho 3 nên 111...1 - n chia hết cho 3
(n c/s 1)
=> 9.(111...1 - n) chia hết cho 27
(n c/s 1)
Mà 27.(n - 2) chia hết cho 27
nên 10n + 18n - 55 chia hết cho 27