Bài 3: Một số phương trình lượng giác thường gặp

NT

107. Pt √3 . tan2x +3=0 có bao nhiêu nghiệm thuộc khoảng (2000π ; 2018π) ( căn ngang số 3 thôi nhé)

A. 37

B. 40

C. 36

D. 35

108. Pt cos5x = 1/√2 có bao nhiêu nghiệm thuộc đoạn [-50π ; 0]

A. 124

B. 125

C. 250

D. 249

109. Pt sin2x = -1/2 có bao nhiêu nghiệm thuộc khoảng (0;π)

A. 1

B. 3

C. 2

D. 4

110. Pt 1+ 2cos2x =0 có nghiệm là? ( Bấm máy)

NL
8 tháng 9 2020 lúc 20:47

107.

\(\Leftrightarrow tan2x=-\sqrt{3}\)

\(\Leftrightarrow2x=-\frac{\pi}{3}+k\pi\)

\(\Leftrightarrow x=-\frac{\pi}{6}+\frac{k\pi}{2}\)

\(2000\pi\le-\frac{\pi}{6}+\frac{k\pi}{2}\le2018\pi\)

\(\Leftrightarrow4000+\frac{1}{3}\le k\le4036+\frac{1}{2}\)

\(4036-4001+1=36\) nghiệm

108.

\(\Leftrightarrow\left[{}\begin{matrix}5x=\frac{\pi}{4}+k2\pi\\5x=-\frac{\pi}{4}+n2\pi\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{20}+\frac{k2\pi}{5}\\x=-\frac{\pi}{20}+\frac{n2\pi}{5}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}-50\pi\le\frac{\pi}{20}+\frac{k2\pi}{5}\le0\\-50\pi\le-\frac{\pi}{20}+\frac{n2\pi}{5}\le0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}-125-\frac{1}{8}\le k\le-\frac{1}{8}\\-125+\frac{1}{8}\le n\le\frac{1}{8}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}-125\le k\le-1\\-124\le n\le0\end{matrix}\right.\)

\(-1-\left(-125\right)+1+0-\left(-124\right)+1=250\) nghiệm

Bình luận (0)
NL
8 tháng 9 2020 lúc 20:51

109.

\(\Leftrightarrow\left[{}\begin{matrix}2x=-\frac{\pi}{6}+k2\pi\\2x=\frac{7\pi}{6}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-\frac{\pi}{12}+k\pi\\x=\frac{7\pi}{12}+k\pi\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}0< -\frac{\pi}{12}+k\pi< \pi\\0< \frac{7\pi}{12}+k\pi< \pi\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}\frac{1}{12}< k< \frac{13}{12}\\-\frac{7}{12}< k< \frac{5}{12}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}k=1\\k=0\end{matrix}\right.\) có 2 nghiệm

110.

\(\Leftrightarrow cos2x=-\frac{1}{2}\)

\(\Leftrightarrow\left[{}\begin{matrix}2x=\frac{2\pi}{3}+k2\pi\\2x=-\frac{2\pi}{3}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{3}+k\pi\\x=-\frac{\pi}{3}+k\pi\end{matrix}\right.\)

Ko có đáp án chọn nên ko thể bấm được, chỉ giải được tự luận thôi :)

Bình luận (0)

Các câu hỏi tương tự
NT
Xem chi tiết
NT
Xem chi tiết
HT
Xem chi tiết
NT
Xem chi tiết
TN
Xem chi tiết
TN
Xem chi tiết
DN
Xem chi tiết
HH
Xem chi tiết
DH
Xem chi tiết