PT

100/1 x 2 + 100/2 x 3 + 100/3 x 4 +...+100/99 x 100

H24
19 tháng 8 2017 lúc 9:14

      A=100/1 x 2 + 100/2 x 3 + 100/3 x 4 +...+100/99 x 100

A/100=1/1 x 2 + 1/2 x 3 + 1/3 x 4 +...+1/99 x 100

A/100=2-1/1x2 + 3-2/2x3 + ... + 100-99/99x100

A/100=1-1/2 + 1/2-1/3+...+1/99-1/100

A/100=1-1/100

A/100=99/100

A=99/100x100=99

Vậy A=99.

Bình luận (0)
TP
19 tháng 8 2017 lúc 9:18

Ta có:

\(\frac{100}{1.2}+\frac{100}{2.3}+\frac{100}{3.4}+...+\frac{100}{99.100}\)

\(\Rightarrow100.\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\right)\)

\(\Rightarrow100.\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\right)\)

\(\Rightarrow100.\left(\frac{1}{1}-\frac{1}{100}\right)\Leftrightarrow100.\frac{99}{100}=99\)

Bình luận (0)
MG
18 tháng 7 2021 lúc 7:50

\(\text{Ta có :}\)

\(\frac{100}{1.2}+\frac{100}{2.3}+\frac{100}{3.4}+...+\frac{100}{99.100}\)

\(=100.\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\right)\)

\(100.\left(\frac{1}{1}-\frac{1}{100}\right)=100.\frac{99}{100}=99\)

Bình luận (0)
 Khách vãng lai đã xóa
LV
18 tháng 7 2021 lúc 8:33

\(\frac{100}{1.2}\)\(+\)\(\frac{100}{2.3}\)\(+\)\(\frac{100}{3.4}\)\(+\)\(...+\)\(\frac{100}{99.100}\)

\(=\)\(100.\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\right)\)

\(=\)\(100.\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\right)\)

\(=\)\(100.\left(\frac{1}{1}-\frac{1}{100}\right)\)

\(=\)\(100.\frac{99}{100}\)

\(=\)\(99\)

Bình luận (0)
 Khách vãng lai đã xóa