CHO E HỎI VỀ ĐƯỜNG CHÉO TRONG MA TRẬN ( KHÔNG CẦN VUÔNG NHÉ)
Ví dụ e có ma trận này, 8 hàng 8 cột
0 0 1 0 1 0 0 0
1 1 1 1 0 1 0 1
0 0 0 1 0 0 1 1
0 1 0 0 1 0 0 1
0 1 0 1 1 1 0 1
0 1 1 0 1 1 0 0
1 1 1 0 1 1 0 0
1 0 1 1 0 0 1 1
Cho e hỏi đường chéo là j z ạ, dãy 1 2, 2 3,3 4, 4 5.... có phải đường chéo ko ?
Hay đường chéo phải đi qua tâm (đcc)( nếu thế ma trận ko vuông ko có đc à)
Cho A,B cố định. Tìm tập hợp điểm M sao cho \(\frac{MA}{MB}=k\) không đổ
i
Giải các hệ phương trình sau:
a)
Câu 6: Giao điểm của đường thẳng y = 4x – 1 và trục tung là:
A. (0; 1 ).
B. ( -1; 0 ).
C. ( 0; -1 ).
D. (1/4;0)
Câu 7: Giao điểm của đường thẳng y = x – 1 và trục hoành là:
A. (0; 1 ).
B. ( -1; 0 ).
C. ( 0; -1 ).
D. (1; 0).
Câu 1:Nếu hai đường thẳng y = -3x + 4 (d1) và y = (m+1)x + m (d2) song
song với nhau thì m bằng: 12
A. -2.
B. 3.
C. - 4.
D. - 3.
Câu 2: Cho hàm số 𝑦 = 2𝑥 + 5. Khi đó góc tạo bởi đường thẳng và trục
hoành là:
A. 620.
B. 640.
C. 660.
D.630.
Câu 3:Gọi A là giao điểm của hai đường thẳng y = x + 2 và y = 2x + 1 , tìm
tọa độ của A?
A. A(1; 3).
B. A(0; 2).
C. A(3; 1).
D. A(1; -3).
Câu 4: Cho hai đồ thị của hàm số bậc nhất là hai đường thẳng
(d) y = (m + 2)x - m và (d') y = -2x - 2m + 1.
Với giá trị nào của m thì d // d' ?
A. m = -2.
B. m = -4.
C. m = 2.
D. m ≠ 2; m ≠ -4.
Câu 5: Cho 2 hàm số 𝑦 = 2𝑥 − 1 và 𝑦 = 3𝑥 − 2𝑚 + 1. Với giá trị nào của
m thì 2 ĐTHS cắt nhau tại 1 điểm trên trục tung
A. m = 1.
B. m = -1.
C. m = 0.
D. m = -2.
Cho mình hỏi :
-2(m-1) >0 thì m-1 <0 => m<1 và -2(m-1)<0 thì m-1>0 thì m>1
-2m+2 >0 thì -2m>-2 => m>1 và -2m+2<0 thì -2m<-2 => m < 1
mà -2(m-1) = -2m+2 mà sao đáp số nó ngược nhau vậy ạ.
Hãy biểu diễn các điểm sau trên mặt phẳng tọa độ: A(-3; 0), B(-1; 1), C(0; 3), D(1; 1), E(3; 0), F(1; -1), G(0; 3), H(-1; -1).
Hãy biểu diễn các điểm sau trên mặt phẳng tọa độ: A(-3; 0), B(-1; 1), C(0; 3), D(1; 1), E(3; 0), F(1; -1), G(0; 3), H(-1; -1).
Bài 1 : giải những các phương trình sau A. X² - 2x - 3 = 0 B. X² - 3x = 0 C. X² - 4x - 5 = 0 D. 5x² + 2x - 7 = 0 E. 2x² - 8 = 0 G. 3x² -7x + 1 = 0 H. X² - 4x + 1 = 0
Đạo hàm y 0 = −3x 2 + 6x + m − 1. Hàm số đã cho đồng biến trên khoảng (0; 3) khi và chỉ khi y 0 > 0, ∀x ∈ (0; 3). Hay −3x 2 + 6x + m − 1 > 0, ∀x ∈ (0; 3) ⇔ m > 3x 2 − 6x + 1, ∀x ∈ (0; 3) (∗). Xét hàm số f(x) = 3x 2 − 6x + 1 trên đoạn [0; 3] có f 0 (x) = 6x − 6; f 0 (x) = 0 ⇔ x = 1. Khi đó f(0) = 1, f(3) = 10, f(1) = −2, suy ra max [0;3] f(x) = f(3) = 10. Do đó (∗) ⇔ m > max [0;3] f(x) ⇔ m > 10. Vậy với m > 10 thì hàm số đã cho đồng biến trên khoảng (0; 3).
Câu 26: Đường thẳng y = -x + 5 cắt trục hoành tại điểm nào?
A. (-5; 0) B. (1; 0) C. (5; 0) D. (1; 4)
Câu 27: Đường thẳng y = 2x – 1 cắt trục tung tại điểm nào?
A. (0; -1) B. (0; 1) C. (1/2;0) D. (-1; 0)
Câu 28: Đường thẳng y = 3x + 2 và đường thẳng y = -x + 6 cắt nhau tại điểm:
A. (1; 5) B . (2; 7) C. (2; 4) D. (4; 14).
Câu 29: Điểm thuộc đường thẳng y = 4x - 2 là:
A. (0; 2) B . (3; 1) C. (2; 6) D. (1; 6).
Câu 30: Đồ thị của hàm số y = 2x + 3 là đường thẳng đi qua hai điểm phân biệt sau
A. (0; 3) và (3; 0) C. (0; 3) và (1,5; 2)
C. (0; 3) và (1; 5) D. (3; 0) và (1,5; 0)
Câu 31: Đồ thị của hàm số y = ax + b (a ≠ 0) là
một đường cong Parabol.
một đường thẳng đi qua hai điểm (0; b) và ((-b)/a;0)
một đường thẳng đi qua gốc toạ độ.
một đường thẳng đi qua hai điểm (b; 0) và (0; b)
Câu 32: Khẳng định nào về hàm số y = x + 3 là sai
A. Cắt Oy tại (0; 3) B. Nghịch biến trên
C. Cắt Ox tại (-3; 0) D. Đồng biến trên
Câu 33: Góc tạo bởi đường thẳng: y = với trục Ox bằng
A. 300 B . 300 C. 450 D. 600.