Ôn tập phương trình bậc hai một ẩn

VP

1. Xác định phương trình \(ax^2+bx+c=0\) a khác 0, a.b.c là các số và a+b=5. Biết rằng phương trình có hai nghiệm x1,x2 thõa mãn \(\left\{{}\begin{matrix}x_1+x_2=-4\\x_1x_2=-5\end{matrix}\right.\)

2. Cho hệ phương trình \(\left\{{}\begin{matrix}x=2\\mx+y=m^2+3\end{matrix}\right.\) với m là tham số. Tìm m đề x+y nhỏ nhất

AH
5 tháng 3 2018 lúc 17:07

Bài 1:

Áp dụng hệ thức Viete của pt bậc 2 ta có:

\(\left\{\begin{matrix} x_1+x_2=\frac{-b}{a}\\ x_1x_2=\frac{c}{a}\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} \frac{-b}{a}=-4(1)\\ \frac{c}{a}=-5(2)\end{matrix}\right.\)

Từ (1) \(\Rightarrow b=4a\). Mà \(a+b=5\) nên \(\Leftrightarrow a+4a=5\Leftrightarrow 5a=5\Leftrightarrow a=1\)

\(\Rightarrow b=4a=4\)

Từ \((2)\Rightarrow c=-5a=-5\)

Do đó PT là: \(x^2+4x-5=0\) (thử lại thấy thỏa mãn)

Bài 2:

\(\left\{\begin{matrix} x=2\\ mx+y=m^2+3\end{matrix}\right.\) \(\Rightarrow 2m+y=m^2+3\)

\(\Leftrightarrow y=m^2-2m+3\)

Khi đó:

\(x+y=2+m^2-2m+3=m^2-2m+5\)

\(x+y=(m-1)^2+4\geq 4\) do \((m-1)^2\ge 0\forall m\in\mathbb{R}\)

Dấu bằng xảy ra khi \(m=1\)

Do đó $x+y$ đạt min khi \(m=1\)

Bình luận (0)
H24
5 tháng 3 2018 lúc 17:59

1)

Bài toán tương hệ : \(\left\{{}\begin{matrix}b^2-4c\ge0\\a+b=5\\\dfrac{-b}{a}=-4\\\dfrac{c}{a}=-5\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}b^2\ge4c\left(1\right)\\a+b=5\left(2\right)\\4a-b=0\left(3\right)\\5a+c=0\left(4\right)\end{matrix}\right.\)

(2) cộng (3) \(\Leftrightarrow5a=5\Leftrightarrow a=\dfrac{5}{5}=1\) thế vào (2) => b =4

thế vào (4) => c=-5 ; c <0 => (1) luôn đúng

Kết luận (không phải thử lai hành động vô nghĩa )

\(f\left(x\right)=x^2+4x-5\)

2)

\(\left\{{}\begin{matrix}x=2\\mx+y=m^2+3\end{matrix}\right.\)\(\begin{matrix}\left(1\right)\\\left(2\right)\end{matrix}\)

thế (1) vào (2)

<=>\(y=m^2-2m+3=\left(m^2-2m+1\right)+2=\left(m-1\right)^2+2\)

x hằng số => x+y nhỏ nhất khi y nhỏ nhất

có (m-1)^2 >=0 đẳng thức khi m =1

=> y nhỏ nhất => m =1

kết luận :

m =1

bài bắt tìm "m" => để (x+y ) nhỏ nhất không bắt tính (x+y) do đâu cần biểu thức (x+y) phức tạp thêm vô bỏ

Bình luận (0)

Các câu hỏi tương tự
ND
Xem chi tiết
PL
Xem chi tiết
PT
Xem chi tiết
NL
Xem chi tiết
TN
Xem chi tiết
TC
Xem chi tiết
TH
Xem chi tiết
ND
Xem chi tiết
NH
Xem chi tiết