Tìm cặp số (x,y) thuộc Z. Thỏa mãn: x^4+x^2+y^2+x^2y^2-4x^2y=0
cho 2 số thực `x,y` thỏa mãn `x>0,y>2,x`\(\ne\)`2y`. CMR: \(\left(\dfrac{x-y}{2y-x}-\dfrac{x^2+y^2+y-2}{x^2-xy-2y^2}\right)\left(2x^2+y+2\right):\dfrac{x^4+4x^2y^2+y^4-4}{x^2+y+xy+x}=\dfrac{x+1}{2y-x}\)
cho x,y thỏa mãn (x^2-y^2+1)^2+4x^2y^2-x^2-y^2=0
Tìm GTNN,GTLN của biểu thức x^2+y^2
Cho hai số x, y thỏa mãn điều kiện: (x^2 - y^2 + 1)^2 + 4x^2y^2 - x^2 - y^2 = 0. Tìm GTLN và GTNN của x^2 + y^2
cho 2 số x, y thỏa mãn điều kiện (x^2-y^2+1)+4x^2y^2-x^2-y^2=0. Tìm GTLN và GTNN của biểu thức x^2+y^2
Cho x,y>0 thỏa mãn: \(x+2y\le5\)
Tìm gtnn của biểu thức:
\(P=x^2+2y^2-2x-9y+\dfrac{1}{x}+\dfrac{4}{y}+2024\)
1/ tìm x,y nguyên dương thỏa mãn: \(x^2-y^2+2x-4y-10=0\)0
2/giải pt nghiệm nguyên :\(x^2+2y^2+3xy+3x+5y=15\)
3/tìm các số nguyên x;y thỏa mãn:\(x^3+3x=x^2y+2y+5\)
4/tìm tất cả các nghiệm nguyên dương x,y thỏa mãn pt:\(5x+7y=112\)
1/tìm các cặp số nguyên (x;y) thỏa mãn:\(5x^2+2xy+y^2-4x-40=0\)0
2/tìm các số nguyên x;y thỏa mãn:\(3xy+x+15y-44=0\)
3/gtp nghiệm nguyên :\(2x^2+3xy-2y^2=7\)
Cho 2 số x, y thỏa mãn"
(x^2-y^2+1)^2+4x^2y^2-x^2-y^2=0
Xét xem x^2+y^2 có GTLN hay GTNN và tìm nó.