1) Ta thấy: \(\left\{{}\begin{matrix}\left|x-1\right|\ge0\forall x\\\left(y+2\right)^{10}\ge0\forall y\end{matrix}\right.\Rightarrow\left|x-1\right|+\left(y+2\right)^{10}\ge0\forall x;y\)
Mặt khác: \(\left|x-1\right|+\left(y+2\right)^{10}=0\)
Do đó: \(\left\{{}\begin{matrix}x-1=0\\y+2=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=1\\y=-2\end{matrix}\right.\)
Thay \(x=1;y=-2\) vào biểu thức \(39x^{2022}+5y^3+2024\), ta được:
\(39\cdot1^{2022}+5\cdot\left(-2\right)^3+2024=2023\)
2)
a) \(P=2a^{n+1}-3a^n+5a^{n+1}-7a^n+3a^{n+1}\) \(\left(n\in\mathbb{N}\right)\)
\(=\left(2a^{n+1}+5a^{n+1}+3a^{n+1}\right)+\left(-3a^n-7a^n\right)\)
\(=10a^{n+1}-10a^n\)
b) Để \(P=0\) thì: \(10a^{n+1}-10a^n=0\)
\(\Rightarrow10a^n\cdot a-10a^n=0\)
\(\Rightarrow10a^n\left(a-1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}a^n=0\\a-1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}a=0\\a=1\end{matrix}\right.\)
Mà \(a\ne0\) nên \(a=1\)
Vậy a = 1 là giá trị cần tìm.
$\text{#}Toru$
1) Ta thấy: {|x−1|≥0∀x(y+2)10≥0∀y⇒|x−1|+(y+2)10≥0∀x;y{|𝑥−1|≥0∀𝑥(𝑦+2)10≥0∀𝑦⇒|𝑥−1|+(𝑦+2)10≥0∀𝑥;𝑦
Mặt khác: |x−1|+(y+2)10=0|𝑥−1|+(𝑦+2)10=0
Do đó: {x−1=0y+2=0⇒{x=1y=−2{𝑥−1=0𝑦+2=0⇒{𝑥=1𝑦=−2
Thay x=1;y=−2𝑥=1;𝑦=−2 vào biểu thức 39x2022+5y3+202439𝑥2022+5𝑦3+2024, ta được:
39⋅12022+5⋅(−2)3+2024=2023