Chứng tỏ :
a, A = \(\dfrac{1}{2.4}+\dfrac{1}{4.6}+...+\dfrac{1}{2022.2024}\) < \(\dfrac{1}{4}\)
b, B =\(\dfrac{1}{1.3}+\dfrac{1}{3.5}+...+\dfrac{1}{2013.2015}< \dfrac{1}{2}\)
c, C =\(\dfrac{1}{3^2}+\dfrac{1}{5^2}+\dfrac{1}{7^2}+...+\dfrac{1}{2013^2}< \dfrac{1}{4}\)
d, D =\(\dfrac{1}{2^2}+\dfrac{1}{4^2}+\dfrac{1}{6^2}+...+\dfrac{1}{2014^2}< \dfrac{1}{2}\)
\(\dfrac{2^2}{1.3}\)x\(\dfrac{3^2}{2.4}\)x\(\dfrac{4^2}{3.5}\)......\(\dfrac{99^2}{98.100}\)
cho A =\(\dfrac{3}{1^2.2^2}+\dfrac{5}{2^2.3^2}+\dfrac{7}{3^2.4^2}+...+\dfrac{19}{9^2.10^2}\) so sánh A với 1
C = \(\dfrac{3}{1^2.2^2}\) + \(\dfrac{5}{2^2.3^2}\)+\(\dfrac{7}{3^2.4^2}\) +...+ \(\dfrac{19}{9^2.10^2}\)
B=\(\dfrac{1}{2.4}\)+\(\dfrac{1}{4.6}\)+\(\dfrac{1}{6.8}\)+\(\dfrac{1}{8.10}\)
Tính :
(1 + \(\dfrac{1}{1.3}\) ) . ( 1+\(\dfrac{1}{2.4}\) ) . (1+\(\dfrac{1}{3.5}\)) . ... . ( 1+\(\dfrac{1}{2019.2021}\))
Tính giá trị biểu thức:
B= \(\dfrac{\left(-2\right)^{24}.3^5-4^{12}.9^2}{8^8.3^5}+\dfrac{2}{1.3}+\dfrac{2}{3.5}+\dfrac{2}{5.7}+...+\dfrac{2}{301.303}\)
Bài 5: Tính nhanh tổng sau(nếu có):
M=\(\dfrac{3}{2}\)-\(\dfrac{5}{6}\)+\(\dfrac{7}{12}\)-\(\dfrac{9}{20}\)+\(\dfrac{11}{30}\)-\(\dfrac{13}{42}\)+\(\dfrac{15}{56}\)-\(\dfrac{17}{72}\) ; A=\(\dfrac{5}{1.3}\)+\(\dfrac{5}{3.5}\)+\(\dfrac{5}{5.7}\)+.....+\(\dfrac{5}{2019.2021}\)
Bài 1. Tính
A= \(\left(8\dfrac{2}{7}-4\dfrac{2}{7}\right)-3\dfrac{4}{9}\)
B= \(\left(10\dfrac{2}{9}-6\dfrac{2}{9}\right)+2\dfrac{3}{5}\)
Bài 2. Tính
a) \(5\dfrac{1}{2}.3\dfrac{1}{4}\) b) \(6\dfrac{1}{3}:4\dfrac{2}{9}\) c) \(4\dfrac{3}{7}.2\)