\(1)\) \(3^x+3^{x+1}+3^{x+2}=351\)
\(\Leftrightarrow\)\(3^x.1+3^x.3+3^x.3^2=351\)
\(\Leftrightarrow\)\(3^x\left(1+3+3^2\right)=351\)
\(\Leftrightarrow\)\(3^x.13=351\)
\(\Leftrightarrow\)\(3^x=\frac{351}{13}\)
\(\Leftrightarrow\)\(3^x=27\)
\(\Leftrightarrow\)\(3^x=3^3\)
\(\Leftrightarrow\)\(x=3\)
Vậy \(x=3\)
Chúc bạn học tốt ~
\(2)\)
\(a)\) Ta có :
\(25^{15}=\left(5^2\right)^{15}=5^{2.15}=5^{30}\)
\(8^{10}.3^{30}=\left(2^3\right)^{10}.3^{30}=2^{30}.3^{30}=\left(2.3\right)^{30}=6^{30}\)
Vì \(5^{30}< 6^{30}\) nên \(25^{15}< 8^{10}.3^{30}\)
Vậy \(25^{15}< 8^{10}.3^{30}\)
\(b)\) Ta có :
\(\left(0,3\right)^{20}=\left[\left(0,3\right)^2\right]^{10}=\left(0,09\right)^{10}\)
Vì \(\left(0,1\right)^{10}>\left(0,09\right)^{10}\) nên \(\left(0,1\right)^{10}>\left(0,3\right)^{20}\)
Vậy \(\left(0,1\right)^{10}>\left(0,3\right)^{20}\)
Chúc bạn học tốt ~