TL

1. Tìm số nguyên tố, biết rằng số đó bằng tổng của hai số nguyên tố và bằng hiệu của hai số nguyên tố

2. Cho ba số nguyên tố lớn hơn 3, trong đó số sau lớn hơn số trước là d đơn vị. Chứng minh rằng d chia hết cho 6
3. Cho p là số nguyên tố lớn hơn 3. Biết p + 2 cũng là SNT. Chứng minh rằng p + 1 chia hết cho 6

4. Cho p và p + 4 là các SNT ( p > 3). Chứng minh rằng p + 8 là hợp số

5. Cho p và 8p - 1 là các SNT. Chứng minh rằng 8p + 1 là hợp số

6. Tìm tất cả các số tự nhiên n để mỗi số sau đều là SNT : n + 1 : n + 3 ; n + 7 ; n + 9 ; n + 13 ; n + 15

Giúp mk vs, mk đang cần gấp lắm nhé! Ai lm trc mk sẽ k cho. Các cậu bt lm bài nào thì chỉ cho mk nhé!

H24
6 tháng 11 2019 lúc 21:07

1

gọi số cần tìm là p.dễ thấy p lẻ

=>p=a+2 và p=b-2

=>a=p-2 và b=p+2

vì p-2,p,p+2 là 3 số lẻ liên tiếp nên có một số chia hết cho 3

với p-2=3=>p=5=7-2(chọn)

p=3=>p=1+2(loại)

p+2=3=>p=1(loại)

vậy p=5

2

vì p1, p2, p3 là 3 số nguyên tố (SNT) > 3 
theo giả thiết: 
p3 = p2 + d = p1 + 2d (*) 
=> d = p3 - p2 là số chẵn ( vì p3, p2 lẻ) 
đặt d = 2m, xét các trường hợp: 
* m = 3k => d chia hết cho 6 
* m = 3k + 1: khi đó 3 số là: 
p2 = p1 + d = p1 + 2m = p1 + 6k + 2 
p3 = p1 + 2d = p1 + 4m = p1 + 12k + 4 
do p1 là SNT > 3 nên p1 chia 3 dư 1 hoặc 2 
nếu p1 chia 3 dư 1 => p2 = p1 + 6k + 2 chia hết cho 3 => p2 là hợp số (không thỏa gt) 
nếu p1 chia 3 dư 2 => p3 = p1 + 12k + 4 chia hết cho 3 => p3 là hợp số (---nt--) 
=> p1, p2 , p3 là SNT khi m ≠ 3k + 1 
* m = 3k + 2, khi đó 3 số là: 
p2 = p1 + d = p1 + 2m = p1 + 6k + 4 
p3 = p1 + 2d = p1 + 4m = p1 + 12k + 8 
nếu p1 chia 3 dư 1 => p3 = p1 + 12k + 8 chia hết cho 3 => p3 là hợp số (không thỏa gt) 
nếu p 1 chia 3 dư 2 => p2 = p1 + 6k + 4 chia hết cho 3 => p2 là hợp số ( không thỏa gt) 
=> p1, p2 , p3 là SNT khi m ≠ 3k + 2 
vậy để p1, p 2, p 3 đồng thời là 3 SNT thì m = 3k => d = 2m = 6k chia hết cho 6.

3

ta có p,p+1,p+2 là 3 số liên tiếp nên 1 trong 3 số chia hết cho 3.

mà p,p+2 là SNT >3 nên p,p+2 ko chia hết cho 3 và là số lẻ

=>p+1 chia hết cho 3 và p+1 chẵn=>p+1 chia hết cho 6

4

vì p là SNT >3=>p=3k+1 hoặc p=3k+2

với p=3k+1=>p+8=3k+9 chia hết cho 3

với p=3k+2=>p+4=3k+6 ko phải là SNT

vậy p+8 là hợp số

5

vì 8p-1 là SNt nên p>3=>8p ko chia hết cho 3

vì 8p,8p+1,8p-1 là 3 số liên tiếp nên 1 trong 3 số chia hết cho 3.mà 8p,8p-1 là SNT >3=>8p+1 chia hết cho 3 và 8p+1>3

=>8p+1 là hợp số

6.

Ta có: Xét:

+n=0=>n+1=1;n+3=3;n+7=7;n+9=9;n+13=13;n+15=15n+1=1;n+3=3;n+7=7;n+9=9;n+13=13;n+15=15(hợp số,loại)

+n=1

=>n+1=2;n+3=4;n+7=8;n+9=10;n+13=14;n+15=16n+1=2;n+3=4;n+7=8;n+9=10;n+13=14;n+15=16(hợp số,loại)

+n=2

=>n+1=3;n+3=5;n+7=9;n+9=11;n+13=15;n+15=17n+1=3;n+3=5;n+7=9;n+9=11;n+13=15;n+15=17(hợp số,loại)

+n=3

=>n+1=4;n+3=6;n+7=10;n+9=12;n+13=16;n+15=18n+1=4;n+3=6;n+7=10;n+9=12;n+13=16;n+15=18(hợp số,loại)

+n=4

n+1=5;n+3=7;n+7=11;n+9=13;n+13=17;n+15=19n+1=5;n+3=7;n+7=11;n+9=13;n+13=17;n+15=19(SNT,chọn)

Nếu n>4 sẽ có dạng 4k+1;4k+2;4k+3

+n=4k+1

⇔n+3=4k+1+3=4k+4⇔n+3=4k+1+3=4k+4(hợp số,loại)

+n=4k+2

=>n+13=4k+2+13=4k+15n+13=4k+2+13=4k+15(hợp số,loại)

+n=4k+3

=>n+3=4k+3+3=4k+6n+3=4k+3+3=4k+6(hợp số,loại)

⇔n=4

Bình luận (0)
 Khách vãng lai đã xóa
NC
12 tháng 3 2022 lúc 14:44

4.vì p là số nguyên tố >3

nên p có dạng 3k+1;3k+2

xét p=3k+1 ta có :p+4=(3k+1)+4=3k+5(thỏa mãn)

xét p=3k+2 ta có: p+4=(3k+2)+4=3k+6 chia hết cho 3(trái với đề bài)

vậy p+8=(3k+1)+8=3k+9 chia hết cho 3

Vậy p+8 là hợp số

 

Bình luận (0)
BT
11 tháng 8 2024 lúc 9:26

1. Gọi số M là số lẻ, Q là số chẵn, nguyên tố cần tìm là P ( P ≠ 2 vì 2 là số nguyên tố chẵn duy nhất, nhỏ nhất nên không thể là tổng) 

- P = A + 2 ( M + Q = M )

- P = B - 2 ( M - Q = M )

- A = P - 2; B = P +  2 

P + 2; P; P - 2 ⇒ 3 số lẻ liên tiếp.

- P ≠ 1 vì P là số nguyên tố.

- P ≠ 2 vì 2 là số nguyên tố chẵn duy nhất, nhỏ nhất nên không thể là tổng.

- P ≠ 3 vì 3 = A + 2; 3 = 1 + 2 ( 1 không phải là số nguyên tố )

- P = 5 vì A + 2 = 5 = B - 2

               3 + 2 = 5 = 7 - 2

⇒ P = 5

Bình luận (0)

Các câu hỏi tương tự
NL
Xem chi tiết
NH
Xem chi tiết
NH
Xem chi tiết
NP
Xem chi tiết
GM
Xem chi tiết
NA
Xem chi tiết
HT
Xem chi tiết
NL
Xem chi tiết
HK
Xem chi tiết