\(\left(y-2\right)\left(y-3\right)+56=\left(y-2\right)x^2+\left(y-2\right)\left(xy-4x\right)\)
\(\Leftrightarrow\left(y-2\right)\left(x^2+xy-4x-y+3\right)=56\)
\(\Leftrightarrow\left(y-2\right)\left[\left(x-1\right)\left(x-3\right)+y\left(x-1\right)\right]=56\)
\(\Leftrightarrow\left(y-2\right)\left(x-1\right)\left(x+y-3\right)=56\)
Tới đây bạn giải pt ước số bình thường (phân tích 56 thành tích 3 số là ok)
\(P\ge\frac{1}{x^2+y^2+z^2}+\frac{9}{xy+yz+zx}=\frac{1}{x^2+y^2+z^2}+\frac{1}{xy+yz+zx}+\frac{1}{xy+yz+zx}+\frac{7}{xy+yz+zx}\)
\(P\ge\frac{9}{x^2+y^2+z^2+xy+yz+zx+xy+yz+zx}+\frac{7}{\frac{\left(x+y+z\right)^2}{3}}\)
\(P\ge\frac{9}{\left(x+y+z\right)^2}+\frac{21}{\left(x+y+z\right)^2}=30\)
Dấu "=" xảy ra khi \(x=y=z=\frac{1}{3}\)