Violympic toán 9

BB

1) Tìm nghiệm nguyên của phương trình \(x^3-y^3-2y^2-3y-1=0\)

2) Tìm bộ nguyên dương (x,y,z) thỏa mãn phương trình

\(\left(x+y\right)^2+3x+y+1=z^2\)

AH
28 tháng 8 2019 lúc 23:52

Bài 2:
Với $x,y,z$ nguyên dương ta thấy:

\((x+y)^2+3x+y+1> (x+y)^2(1)\)

Và:

\((x+y)^2+3x+y+1< (x+y)^2+4(x+y)+4\)

hay $(x+y)^2+3x+y+1< (x+y+2)^2(2)$

Từ \((1);(2)\Rightarrow (x+y)^2< (x+y)^2+3x+y+1< (x+y+2)^2\)

\(\Leftrightarrow (x+y)^2< z^2< (x+y+2)^2\)

Theo nguyên lý kẹp suy ra $z^2=(x+y+1)^2$

$\Leftrightarrow (x+y)^2+3x+y+1=(x+y+1)^2$

$\Leftrightarrow x=y$

Thay vào PT ban đầu:

\((2x)^2+3x+x+1=z^2\Leftrightarrow (2x+1)^2=z^2\Rightarrow 2x+1=z\) (không có TH $2x+1=-z$ do $x,z$ cùng nguyên dương)

Vậy PT có nghiệm $(x,y,z)=(m,m,2m+1)$ với $m$ là số nguyên dương bất kỳ.

Bình luận (0)
AH
28 tháng 8 2019 lúc 23:39

Lời giải:

Xét

PT \(\Leftrightarrow x^3=y^3+2y^2+3y+1\)

Ta thấy:

\(y^3+2y^2+3y+1=(y^3+3y^2+3y+1)-y^2=(y+1)^3-y^2\leq (y+1)^3(1)\)

\(y^3+2y^2+3y+1=(y^3-3y^2+3y-1)+5y^2+2=(y-1)^3+5y^2+2\)

\(>(y-1)^3(2)\)

Từ \((1);(2)\Rightarrow (y+1)^3\geq y^3+2y^2+3y+1> (y-1)^3\)

\(\Leftrightarrow (y+1)^3\geq x^3> (y-1)^3\)

Theo nguyên lý kẹp thì \(\left[\begin{matrix} x^3=(y+1)^3\\ x^3=y^3\end{matrix}\right.\)

Nếu \(x^3=(y+1)^3\Leftrightarrow y^3+2y^2+3y+1=(y+1)^3\)

\(\Leftrightarrow y=0\)

\(\Rightarrow x^3=1\Rightarrow x=1\)

Nếu \(x^3=y^3\Leftrightarrow y^3+2y^2+3y+1=y^3\)

\(\Leftrightarrow 2y^2+3y+1=0\Leftrightarrow (2y+1)(y+1)=0\Rightarrow y=-1\) (do $y$ nguyên)

$\Rightarrow x^3=y^3=-1\Rightarrow x=-1$

Vậy $(x,y)=(1,0); (-1,-1)$

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
NT
Xem chi tiết
NL
Xem chi tiết
TQ
Xem chi tiết
PN
Xem chi tiết
H24
Xem chi tiết
PH
Xem chi tiết
PN
Xem chi tiết
HA
Xem chi tiết