Chương 4: GIỚI HẠN

H24

1. Tìm lim un

a. \(u_n=\dfrac{1}{2^2-1}+\dfrac{1}{3^2-1}+...+\dfrac{1}{n^2-1}\)

b. \(u_n=\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{n\left(n+1\right)}\)

c.\(u_n=\dfrac{1}{1}+\dfrac{1}{1+2}+...+\dfrac{1}{1+2+...+n}\)

d. \(u_n=\left[\left(1-\dfrac{1}{2^2}\right)\left(1-\dfrac{1}{3^2}\right)...\left(1-\dfrac{1}{n^2}\right)\right]\)

Ai giúp mk với hoặc gợi ý cho mik cx đc . Tks nhiều 

 

NL
4 tháng 12 2021 lúc 15:57

a.

\(u_n=\dfrac{1}{\left(2-1\right)\left(2+1\right)}+\dfrac{1}{\left(3-1\right)\left(3+1\right)}+...+\dfrac{1}{\left(n-1\right)\left(n+1\right)}\)

\(=\dfrac{1}{1.3}+\dfrac{1}{2.4}+\dfrac{1}{3.5}+...+\dfrac{1}{\left(n-2\right)n}+\dfrac{1}{\left(n-1\right)\left(n+1\right)}\)

\(=\dfrac{1}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{n-2}-\dfrac{1}{n}+\dfrac{1}{n-1}-\dfrac{1}{n+1}\right)\)

\(=\dfrac{1}{2}\left(1+\dfrac{1}{2}-\dfrac{1}{n}-\dfrac{1}{n+1}\right)\)

\(=\dfrac{1}{2}\left(\dfrac{3}{2}-\dfrac{1}{n}-\dfrac{1}{n+1}\right)\)

\(\Rightarrow\lim u_n=\lim\left(\dfrac{1}{2}\left(\dfrac{3}{2}-\dfrac{1}{n}-\dfrac{1}{n+1}\right)\right)=\dfrac{1}{2}.\dfrac{3}{2}=\dfrac{3}{4}\)

Bình luận (1)
NL
4 tháng 12 2021 lúc 16:00

b.

\(u_n=\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{n\left(n+1\right)}\)

\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{n}-\dfrac{1}{n+1}\)

\(=1-\dfrac{1}{n+1}\)

\(\Rightarrow\lim u_n=\lim\left(1-\dfrac{1}{n+1}\right)=1\)

Bình luận (0)
NL
4 tháng 12 2021 lúc 16:02

c.

\(1+2+...+n=\dfrac{n\left(n+1\right)}{2}\)

\(\Rightarrow\dfrac{1}{1+2+...+n}=\dfrac{2}{n\left(n+1\right)}=\dfrac{2}{n}-\dfrac{2}{n+1}\)

\(\Rightarrow u_n=1+\dfrac{2}{2}-\dfrac{2}{3}+\dfrac{2}{3}-\dfrac{2}{4}+...+\dfrac{2}{n}-\dfrac{2}{n+1}\)

\(=1+1-\dfrac{2}{n+1}=2-\dfrac{2}{n+1}\)

\(\Rightarrow\lim u_n=\lim\left(2-\dfrac{2}{n+1}\right)=2\)

Bình luận (0)
NL
4 tháng 12 2021 lúc 16:07

d.

\(u_n=\left(1-\dfrac{1}{2^2}\right)\left(1-\dfrac{1}{3^2}\right)...\left(1-\dfrac{1}{n^2}\right)\)

\(=\dfrac{\left(2^2-1\right)\left(3^2-1\right)...\left(n^2-1\right)}{2^2.3^2...n^2}\)

\(=\dfrac{1.3.2.4...\left(n-1\right)\left(n+1\right)}{2^2.3^2...n^2}\)

\(=\dfrac{1.2...\left(n-1\right)}{2.3...n}.\dfrac{3.4...\left(n+1\right)}{2.3...n}\)

\(=\dfrac{1}{n}.\dfrac{n+1}{2}=\dfrac{n+1}{2n}\)

\(\Rightarrow\lim u_n=\lim\left(\dfrac{n+1}{2n}\right)=\lim\left(\dfrac{1+\dfrac{1}{n}}{2}\right)=\dfrac{1}{2}\)

Bình luận (0)

Các câu hỏi tương tự
NC
Xem chi tiết
BB
Xem chi tiết
HC
Xem chi tiết
KR
Xem chi tiết
BB
Xem chi tiết
AT
Xem chi tiết
TL
Xem chi tiết
PD
Xem chi tiết
PD
Xem chi tiết