Chương 4: GIỚI HẠN

KR

Cho dãy un được xác định bởi

\(\left\{{}\begin{matrix}u_1=1\\u_{n+1}=\dfrac{u_n}{u_n+1}\end{matrix}\right.\) với n=1,2,3,.... Tính 

 \(\lim\limits_{ }\dfrac{2014\left(u_1+1\right)\left(u_2+1\right)....\left(u_n+1\right)}{2015n}\)

NL
5 tháng 3 2022 lúc 16:11

\(u_{n+1}=\dfrac{u_n}{u_n+1}\Rightarrow\dfrac{1}{u_{n+1}}=\dfrac{1}{u_n}+1\)

Đặt \(\dfrac{1}{u_n}=v_n\Rightarrow\left\{{}\begin{matrix}v_1=\dfrac{1}{u_1}=1\\v_{n+1}=v_n+1\end{matrix}\right.\)

\(\Rightarrow v_n\) là CSC với công sai \(d=1\Rightarrow v_n=v_1+\left(n-1\right).1=n\)

\(\Rightarrow u_n=\dfrac{1}{n}\)

\(\Rightarrow u_n+1=\dfrac{n+1}{n}\)

\(\lim\dfrac{2014\left(\dfrac{2}{1}\right)\left(\dfrac{3}{2}\right)\left(\dfrac{4}{3}\right)...\left(\dfrac{n+1}{n}\right)}{2015n}=\lim\dfrac{2014\left(n+1\right)}{2015n}=\dfrac{2014}{2015}\)

Bình luận (1)

Các câu hỏi tương tự
BB
Xem chi tiết
NC
Xem chi tiết
BB
Xem chi tiết
H24
Xem chi tiết
BB
Xem chi tiết
BB
Xem chi tiết
AN
Xem chi tiết
NC
Xem chi tiết
IY
Xem chi tiết