1, \(VT=\left(\sqrt{a+b}\right)^2=a+b\)
VP=\(\left(\sqrt{a}+\sqrt{b}\right)^2=a+b+2\sqrt{ab}\)
(vì a,b<0 => ab>0 => \(\sqrt{ab}>0\)
=> \(\sqrt{a+b}
1, \(VT=\left(\sqrt{a+b}\right)^2=a+b\)
VP=\(\left(\sqrt{a}+\sqrt{b}\right)^2=a+b+2\sqrt{ab}\)
(vì a,b<0 => ab>0 => \(\sqrt{ab}>0\)
=> \(\sqrt{a+b}
So sánh
a) 2 và 1+\(\sqrt{2}\)
b) 4 và 1+\(\sqrt{3}\)
c) -2\(\sqrt{11}\) và -10
d) 3\(\sqrt{11}\) và 12
Cho biểu thức: B=\(\left(\frac{1}{a-\sqrt{a}}+\frac{1}{\sqrt{a}-1}\right):\frac{\sqrt{a}+1}{a-2\sqrt{a}+1}\)
a) Rút gọn B
b) So sánh B với 1
1) Tìm x không âm
a) 3-2\(\sqrt{8+x}\) > hoặc = 0
b) 3\(\sqrt{2x-1-3}\) < 0
2) So sánh
a) 2\(\sqrt{6}\) -3 và 1
b) 6 và 9-3\(\sqrt{2}\)
So sánh A và B:
\(A=\sqrt{2015^2-1}-\sqrt{2014^2-1}\)
\(B=\frac{2.2014}{\sqrt{2015^2-1}+\sqrt{2014^2-1}}\)
Cho A= \(\dfrac{x-\sqrt{x}+1}{\sqrt{x}-1}\)và B= \(\dfrac{\sqrt{x}+1}{\sqrt{x}-2}+\dfrac{2}{\sqrt{x}+3}-\dfrac{9\sqrt{x}-3}{x+\sqrt{x}-6}\)
a) rút gọn B
b) Cho x>0. so sánh A với 3
1 Cho a,b,c là ba số dương thỏa mãn điều kiện a2=b2+c2
a)So sánh a và b+c
b) So sánh a3 và b3+c3
Bài 2
1)Giai phương trình : x3-6x-40=0
2) Tính A=\(\sqrt[3]{20+14\sqrt{2}}+\sqrt[3]{20-14\sqrt{2}}\)
So sánh : \(A=\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{100}}\) và B = 100
giúp mình với
bài 5: a) so sánh \(\sqrt{25}+\sqrt{9}\) và \(\sqrt{25+9}\)
b)CMR: a>0,b>0 thì \(\sqrt{a+b}\)<\(\sqrt{a}+\sqrt{b}\)