NT

1 phần 1×3 + 1phần 2×4 + 1phần 3×5+.......+1phần +98×100

ND
17 tháng 7 2020 lúc 21:40

Bài làm:

Ta có: \(\frac{1}{1.3}+\frac{1}{2.4}+\frac{1}{3.5}+...+\frac{1}{98.100}\)

\(=\left(\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{97.99}\right)+\left(\frac{1}{2.4}+\frac{1}{4.6}+...+\frac{1}{98.100}\right)\)

\(=\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{97}-\frac{1}{99}\right)+\frac{1}{2}\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+...+\frac{1}{98}-\frac{1}{100}\right)\)

\(=\frac{1}{2}\left(1-\frac{1}{99}\right)+\frac{1}{2}\left(\frac{1}{2}-\frac{1}{100}\right)\)

\(=\frac{1}{2}.\frac{98}{99}+\frac{1}{2}.\frac{49}{100}\)

\(=\frac{49}{99}+\frac{49}{200}\)

\(=\frac{14651}{19800}\)

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
PN
Xem chi tiết
TN
Xem chi tiết
LC
Xem chi tiết
TH
Xem chi tiết
H24
Xem chi tiết
NM
Xem chi tiết
H24
Xem chi tiết
NT
Xem chi tiết
NN
Xem chi tiết