Violympic toán 9

MK

1, giải hệ phương trình:\(\left\{{}\begin{matrix}y^3-2x^3+3x^2y-3xy^2=0\\x^2y^2-4x^2y-y^2-8x+8y+4=0\end{matrix}\right.\)

NL
26 tháng 8 2020 lúc 15:44

\(y^3+3x^2y-3xy^2-2x^3=0\)

\(\Leftrightarrow\left(y^3-xy^2+x^2y\right)-2\left(x^3-x^2y+xy^2\right)=0\)

\(\Leftrightarrow y\left(x^2-xy+y^2\right)-2x\left(x^2-xy+y^2\right)=0\)

\(\Leftrightarrow\left(y-2x\right)\left(x^2-xy+y^2\right)=0\)

\(\Rightarrow y=2x\)

Thế xuống dưới:

\(x^4-2x^3-x^2+2x+1=0\)

Nhận thấy \(x=0\) ko phải nghiệm, chia 2 vế cho \(x^2\)

\(x^2+\frac{1}{x^2}-2\left(x-\frac{1}{x}\right)-1=0\)

Đặt \(x-\frac{1}{x}=t\Rightarrow x^2+\frac{1}{x^2}=t^2+2\) pt trở thành:

\(t^2-2t+1=0\Leftrightarrow t=1\)

\(\Leftrightarrow x-\frac{1}{x}=1\Leftrightarrow x^2-x-1=0\Leftrightarrow...\)

Bình luận (0)

Các câu hỏi tương tự
LV
Xem chi tiết
GH
Xem chi tiết
TT
Xem chi tiết
BL
Xem chi tiết
KZ
Xem chi tiết
PQ
Xem chi tiết
KZ
Xem chi tiết
LY
Xem chi tiết
NT
Xem chi tiết