Violympic toán 9

LY

Giải hệ phương trình: \(\left\{{}\begin{matrix}x^2-5y^2-8y=3\\\left(2x+4y-1\right)\sqrt{2x-y-1}=\left(4x-2y-3\right)\sqrt{x+2y}\end{matrix}\right.\)

NL
12 tháng 8 2020 lúc 12:00

ĐKXĐ:...

Đặt \(\left\{{}\begin{matrix}\sqrt{2x-y-1}=a\ge0\\\sqrt{x+2y}=b\ge0\end{matrix}\right.\)

Khi đó pt dưới trở thành:

\(\left(2b^2-1\right)a=\left(2a^2-1\right)b\)

\(\Leftrightarrow2a^2b-2ab^2+a-b=0\)

\(\Leftrightarrow2ab\left(a-b\right)+a-b=0\)

\(\Leftrightarrow\left(a-b\right)\left(2ab+1\right)=0\)

\(\Leftrightarrow a=b\) (do \(a;b\ge0\Rightarrow2ab+1>0\))

\(\Rightarrow\sqrt{2x-y-1}=\sqrt{x+2y}\)

\(\Leftrightarrow2x-y-1=x+2y\)

\(\Leftrightarrow x=3y+1\)

Thay vào pt đầu:

\(\left(3y+1\right)^2-5y^2-8y=3\)

Bạn giải nốt

Bình luận (0)

Các câu hỏi tương tự
PT
Xem chi tiết
AQ
Xem chi tiết
KN
Xem chi tiết
PT
Xem chi tiết
KZ
Xem chi tiết
KZ
Xem chi tiết
HT
Xem chi tiết
LS
Xem chi tiết
MS
Xem chi tiết