N2

`1)` Giải các pt `a)(x+2)/(x-3)+x/(x+2)=(x^{2}+6)/(x^{2}-x-6)` `b)(x+1)^{2}+|x-1|=x^{2}+4` `2)` Giải bất phương trình sau và biểu diễn tập nghiệm trên trục số `1-(x-1)/3<(x+3)/3-(x-2)/2`

NT
11 tháng 4 2022 lúc 12:18

1.\(\dfrac{x+2}{x-3}+\dfrac{x}{x+2}=\dfrac{x^2+6}{x^2-x-6}\)

\(\Leftrightarrow\dfrac{x+2}{x-3}+\dfrac{x}{x+2}=\dfrac{x^2+6}{\left(x+2\right)\left(x-3\right)}\)

\(ĐK:x\ne3;-2\)

\(\Leftrightarrow\dfrac{\left(x+2\right)\left(x+2\right)+x\left(x-3\right)}{\left(x+2\right)\left(x-3\right)}=\dfrac{x^2+6}{\left(x+2\right)\left(x-3\right)}\)

\(\Leftrightarrow\left(x+2\right)\left(x+2\right)+x\left(x-3\right)=x^2+6\)

\(\Leftrightarrow x^2+4x+4+x^2-3x-x^2-6=0\)

\(\Leftrightarrow x^2+x-2=0\)

\(\Leftrightarrow\left(x^2-x\right)+\left(2x-2\right)=0\)

\(\Leftrightarrow x\left(x-1\right)+2\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\left(tm\right)\\x=-2\left(ktm\right)\end{matrix}\right.\)

Vậy \(S=\left\{1\right\}\)

 

Bình luận (0)
NT
11 tháng 4 2022 lúc 12:24

b.\(\left(x+1\right)^2+\left|x-1\right|=x^2+4\)

\(\Leftrightarrow\)    \(\left(x+1\right)^2+x-1=x^2+4\) hoặc   \(\left(x+1\right)^2+1-x=x^2+4\)

Xét \(\left(x+1\right)^2+x-1=x^2+4\)

\(\Leftrightarrow x^2+2x+1+x-1-x^2-4=0\)

\(\Leftrightarrow3x-4=0\)

\(\Leftrightarrow x=\dfrac{4}{3}\)

Xét \(\left(x+1\right)^2+1-x=x^2+4\)

\(\Leftrightarrow x^2+2x+1+1-x-x^2-4=0\)

\(\Leftrightarrow x-2=0\)

\(\Leftrightarrow x=2\)

Vậy \(S=\left\{\dfrac{4}{3};2\right\}\)

2.\(1-\dfrac{x-1}{3}< \dfrac{x+3}{3}-\dfrac{x-2}{2}\)

\(\Leftrightarrow\dfrac{6-2\left(x-1\right)}{6}< \dfrac{2\left(x+3\right)-3\left(x-2\right)}{6}\)

\(\Leftrightarrow6-2\left(x-1\right)< 2\left(x+3\right)-3\left(x-2\right)\)

\(\Leftrightarrow6-2x+2< 2x+6-3x+6\)

\(\Leftrightarrow-x< 4\)

\(\Leftrightarrow x>4\)

Vậy \(S=\left\{x|x>4\right\}\)

0 4

Bình luận (0)

Các câu hỏi tương tự
PB
Xem chi tiết
PM
Xem chi tiết
PB
Xem chi tiết
ND
Xem chi tiết
ND
Xem chi tiết
MD
Xem chi tiết
HP
Xem chi tiết
DN
Xem chi tiết
MD
Xem chi tiết