NV

\(1-\frac{2}{1.3}-\frac{2}{3.5}-............-\frac{2}{2005.2007}=?\)

các bạn giúp mình với nhé!

 
15 tháng 5 2017 lúc 20:48

\(=1-\left(\frac{2}{1.3}-\frac{2}{3.5}-...-\frac{2}{2005-2007}\right)\)

\(=1-\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{2005}-\frac{1}{2007}\right)\)

\(=1-\left[1+\left(-\frac{1}{3}+\frac{1}{3}\right)+\left(-\frac{1}{5}+\frac{1}{5}\right)+...+\left(-\frac{1}{2005}+\frac{1}{2005}\right)-\frac{1}{2007}\right]\)

\(=1-\left(1+0+0+...+0-\frac{1}{2007}\right)\)

\(=1-\left(1-\frac{1}{2007}\right)\)

\(=1-1+\frac{1}{2007}\)

\(=0+\frac{1}{2007}\)

\(=\frac{1}{2007}\)

Ai thấy tớ đúng k nha

Bình luận (0)
ST
15 tháng 5 2017 lúc 20:39

Đặt A = \(1-\frac{2}{1.3}-\frac{2}{3.5}-.....-\frac{2}{2005.2007}\)

\(1-\left(\frac{2}{1.3}+\frac{2}{3.5}+....+\frac{2}{2005.2007}\right)\)

=\(1-\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+....+\frac{1}{2005}-\frac{1}{2007}\right)\)

\(1-\left(1-\frac{1}{2017}\right)\)

=\(1-1+\frac{1}{2017}\)

=\(0+\frac{1}{2017}\)

=\(\frac{1}{2017}\)

Bình luận (0)

Các câu hỏi tương tự
YS
Xem chi tiết
YS
Xem chi tiết
TV
Xem chi tiết
DT
Xem chi tiết
NL
Xem chi tiết
HH
Xem chi tiết
HH
Xem chi tiết
ND
Xem chi tiết
HH
Xem chi tiết