a) gọi ƯCLN( 3n+13; 3n+14) = d \(\Rightarrow\hept{\begin{cases}3n+13⋮d\\3n+14⋮d\end{cases}\Rightarrow\left(3n+14\right)-\left(3n+13\right)⋮d\Rightarrow1⋮d\Rightarrow d=1}\)
b) \(\)sai đề
vì \(3n+15=3\left(n+5\right)⋮3\); \(6n+9=3\left(2n+3\right)⋮3\)
nên có ƯC( 3n+15; 6n+9)=3
a) Gọi d là ước chung nguyên tố của 3n + 13 và 3n + 14
=> 3n + 13 chia hết cho d ; 3n + 14 chia hết cho d
=> ( 3n+ 14 ) - ( 3n + 13 ) chia hết cho d
=> 1 chia hết cho d
=>d = 1 ( vì d là ƯCLN )
=> ƯCLN ( 3n + 13, 3n + 14 )
Vậy ƯCLN ( 3n + 13, 3n + 14 ) = 1
( câu b mình thấy sai sai thế nào ấy, bạn xem lại đề nhé )