HH

1/ Chứng minh định lí: Trong tam giác vuông, trung tuyến ứng với cạnh huyền bằng nửa cạnh huyền.

2/ Chứng minh định lí: Nếu 1 tam giác có trung tuyến ứng với một cạnh bằng nửa cạnh ấy thì tam giác đó là tam giác vuông.

VẼ HÌNH - GHI GT + KL GIÙM LUÔN!

NP
16 tháng 12 2017 lúc 23:48

  1/ Phần này đơn giản thôi bạn! Khi chứng minh tâm của đường tròn ngoại tiếp tam giác vuồn là trung điểm cạnh huyền thì ta chứng minh ngược lại là trung điểm của cạnh huyền trong 1 tam giác vuông là tâm của đường tròn ngoại tiếp. 
Giả sử ta có tam giác ABC vuông tại A và O là trung điểm của cạnh huyền BC 
=> AO là đường trung tuyến ứng với cạnh huyền 
=> OA = OB =OC = 1/2 BC 
=> O là tâm của đường tròn ngoại tiếp tam giác ABC 
Vậy .... 
2/ Giả sử ta có tam giác ABC có BC là đường kính của đường tròn ngoại tiếp tam giác. 
Gọi O là tâm của đường tròn ngoại tiếp tam giác ABC 
=>OA = OB =OC (*) 
mà BC là đường kính của đường tròn ngoại tiếp 
=> O là trung điểm BC 
=> OB = OC = 1/2 BC(**) 
từ (*) và (**) => OA = OB = OC = 1/2 BC 
=> tam giác ABC vuông tại A 

Bình luận (0)
NN
20 tháng 2 2018 lúc 10:14

@Nhoc_sieu_pham đây là toán lớp 7 mà, sao lại giải cách lớp 9 như vậy được?

Bình luận (0)
NN
20 tháng 2 2018 lúc 10:26

1> Giả sử đó là tam giác vuông ABC, trung tuyến AM. Trên tia đối MA lấy điểm H sao cho M là trung điểm của AH.

=>MA=MH=1/2AH(*)

\(\Delta AMC=\Delta BMH\left(c.g.c\right)\)

=>\(\widehat{CAM}=\widehat{BHM}\)và AC=BH

Mà hai góc này nằm ở vị trí so le trrong của 2 đường thẳng AC và BH

=> AC // BH

mà AC L AB => BH L AB => \(\widehat{ABH}=90^o\)

Xét \(\Delta ABC\)\(\Delta BAH\)

AC=BC

\(\widehat{BAC}=\widehat{ABH}=90^o\)

cạnh chung AB

=> \(\Delta ABC=\Delta BAH\left(c.g.c\right)\)

=> BC=AH(**)

Lại có MB=MC=1/2BC(***)

Từ (*),(**),(***)=> MA=MB=MC=1/2BC (đpcm)

Bình luận (1)

Các câu hỏi tương tự
H24
Xem chi tiết
ND
Xem chi tiết
IM
Xem chi tiết
IM
Xem chi tiết
DM
Xem chi tiết
MT
Xem chi tiết
NA
Xem chi tiết
NO
Xem chi tiết
HL
Xem chi tiết