Violympic toán 9

1, cho x,y là các số thực dương thỏa mãn điều kiện:x+y≤1. Tìm giá trị nhỏ nhất của biểu thức: K=\(4xy+\dfrac{1}{x^2+y^2}+\dfrac{2}{xy}\)

NL
27 tháng 4 2021 lúc 22:11

\(K=\left(4xy+\dfrac{1}{4xy}\right)+\left(\dfrac{1}{x^2+y^2}+\dfrac{1}{2xy}\right)+\dfrac{5}{4xy}\)

\(K\ge2\sqrt{\dfrac{4xy}{4xy}}+\dfrac{4}{x^2+y^2+2xy}+\dfrac{5}{\left(x+y\right)^2}\ge2+4+5=11\)

\(K_{min}=11\) khi \(x=y=\dfrac{1}{2}\)

Bình luận (0)

Các câu hỏi tương tự
NH
Xem chi tiết
TH
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
AL
Xem chi tiết
KT
Xem chi tiết
LN
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết