EC

1. Cho tam giác ABC vuông tại A, hai đường cao AI và BD cắt nhau tại H.

a) CMR: t/giác AIC đồng dạng t/giác BDC.

b) Gọi E là giao điểm của CH và AB. CMR: BE.BA + CH.CE = BC2

c) Gọi F là giao điểm của DE và AH. CMR: \(\frac{1}{AF}+\frac{1}{AI}=\frac{2}{AH}\)

2.Cho tam giác ABC vuông tại A. Đường cao AH . Gọi D và E là hình chiếu của H trên AB và AC. Gọi I và K là giao điểm của các đường p/giác trong của t/giác ABH và t/giác ACH; O là giao điểm của BI và CK. CMR: O là trực tâm của t/giác AIK

 

ZZ
5 tháng 8 2020 lúc 16:42

Gọi J,R lần lượt là giao điểm của AI, AK với BC.

Ta có biến đổi góc:^BAR=^BAH+^HAR=^ACR+^RAC=^ARB vì vậy tam giác ABR cân tại B suy ra BO đồng thời là đường cao

Tương tự thì CO là đường cao khi đó O là trực tâm của tam giác AIK

Vậy ta có đpcm

hình vẽ trong Thống kê hỏi đáp

Bình luận (0)
 Khách vãng lai đã xóa
TL
5 tháng 8 2020 lúc 19:59

bài 1:

AI _|_ BC tại I => \(\widehat{AIB}=\widehat{AIC}=90^o\)

BD _|_ AC tại D => \(\widehat{ADB}=\widehat{CDB}=90^o\)

xét tam giác AIC và tam giác BDC có \(\hept{\begin{cases}\widehat{AIB}=\widehat{AIC}=90^o\\\widehat{C}chung\end{cases}}\)

=> tam giác AIC đồng dạng với tam giác BCD (g-g)

b) xét tam giác ABC có AI và BD là 2 đường cao cắt nhau tại H => H là trực tâm tam giác ABC

=> CH _|_ AB => H là trực tâm tam giác ABC

xét tam giác CEB và tam giác IAB có: \(\hept{\begin{cases}\widehat{CEB}=\widehat{AIB}=90^o\\\widehat{B}chung\end{cases}\Rightarrow\Delta CEB~\Delta AIB\left(g-g\right)\Rightarrow\frac{CB}{AB}=\frac{EB}{IB}}\)

=> CB.IB=EB.AB (1)

xét tam giác CIH và CEB có \(\hept{\begin{cases}\widehat{CIH}=\widehat{CEB}=90^o\\\widehat{C}chung\end{cases}\Rightarrow\Delta CIH~\Delta CEB\left(g-g\right)\Rightarrow\frac{CI}{CE}=\frac{CH}{CB}}\)

=> CI.CB=CE.CH (2)

từ (1) và (2) => EB.AB+CH.CE=CB.IB+CI.CB

\(\Leftrightarrow BE\cdot BA+CH\cdot CE=\left(IB+IC\right)BC=BC^2\)

\(\Leftrightarrow BE\cdot BA+CH\cdot CE=BC^2\)

Bình luận (0)
 Khách vãng lai đã xóa
EC
5 tháng 8 2020 lúc 21:58

Hải Ngọc, cảm ơn nhưng t chỉ cần câu 1c

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
H24
Xem chi tiết
MM
Xem chi tiết
NT
Xem chi tiết
NA
Xem chi tiết
PT
Xem chi tiết
DL
Xem chi tiết
TN
Xem chi tiết
KB
Xem chi tiết
PK
Xem chi tiết