HM

1. Cho tam giác ABC đều. Có đường cao bằng 3cm. Gọi M là điểm bất kì nằm trong tam giá. Gọi x, y, z là khoảng cách từ M đến AB, BC, AC.

Tìm min \(x^2+y^2+z^2\)

2. Cho điểm O nằm trong tam giác ABC. Tia AO  cắt BC tại A' ; BO cắt AC tại B' ; CO cắt AB tại C'. CMR: \(\dfrac{OA'}{AA'}+\dfrac{OB'}{BB'}+\dfrac{OC'}{CC'}=1\)

NM
4 tháng 12 2021 lúc 12:16

1.

Gọi cạnh tam giác ABC là a

\(S_{ABC}=S_{AMB}+S_{BMC}+S_{AMC}\\ \Leftrightarrow\dfrac{1}{2}ah=\dfrac{1}{2}ax+\dfrac{1}{2}ay+\dfrac{1}{2}az\\ \Leftrightarrow x+y+z=h\)

Lại có \(3\left(x^2+y^2+z^2\right)\ge\left(x+y+z\right)^2=h^2\left(bunhia\right)\)

\(\Leftrightarrow x^2+y^2+z^2\ge\dfrac{1}{3}h^2\)

Dấu \("="\Leftrightarrow x=y=z\Leftrightarrow M\) là giao 3 đường p/g của \(\Delta ABC\)

Bình luận (0)

Các câu hỏi tương tự
OP
Xem chi tiết
H24
Xem chi tiết
PQ
Xem chi tiết
PB
Xem chi tiết
DM
Xem chi tiết
HB
Xem chi tiết
LL
Xem chi tiết
KT
Xem chi tiết
NM
Xem chi tiết