§2. Tập hợp

VT

1) cho pt

\(x^2-2x+m-5=0\)

a) thay m=1

B) tìm m để pt có 2 nghiệm phân biệt

2) cho pt

\(x^2-\left(2m+1\right)x+m^2-2=0\)

a) thay m= 1

b) Tìm m để pt có 2 nghiệm phân biệt

MP
21 tháng 8 2017 lúc 7:44

câu 1) a) thay \(m=1\) vào phương trình ta có phương trình tương đương

\(x^2-2x+m-5=0\Leftrightarrow x^2-2x+1-5=0\Leftrightarrow x^2-2x-4=0\)

\(\Delta'=\left(-1\right)^2-\left(-4\right)=1+4=5>0\)

\(\Rightarrow\) phương trình có 2 nghiệm phân biệt

\(x_1=1+\sqrt{5}\) ; \(x_2=1-\sqrt{5}\)

b) \(\Delta'=\left(-1\right)^2-\left(m-5\right)=1-m+5=6-m\)

ta có phương trình có 2 nghiệm phân biệt

\(\Leftrightarrow\Delta'>0\Leftrightarrow6-m>0\Leftrightarrow m< 6\)

vậy \(m< 6\) thì phương trình có 2 nghiệm phân biệt

2) a) thay \(m=1\) vào phương trình ta có phương trình tương đương

\(x^2-\left(2m+1\right)x+m^2-2=x^2-\left(2.1+1\right)x+1^2-2\)

\(=x^2-3x-1=0\)

\(\Delta=\left(-3\right)^2-4.1.\left(-1\right)=9+4=13>0\)

\(\Rightarrow\) phương trình có 2 nghiệm phân biệt

\(x_1=\dfrac{3+\sqrt{13}}{2}\) ; \(x_2=\dfrac{3-\sqrt{13}}{2}\)

b) \(\Delta=\left(2m+1\right)^2-4.1.\left(m^2-2\right)=4m^2+4m+1-4m^2+8\)

\(\Delta=9+4m\)

ta có phương trình có 2 nghiệm phân biệt

\(\Leftrightarrow9+4m>0\Leftrightarrow4m>-9\Leftrightarrow m>\dfrac{-9}{4}\)

vậy \(m>\dfrac{-9}{4}\) thì phương trình có 2 nghiệm phân biệt

Bình luận (0)

Các câu hỏi tương tự
KT
Xem chi tiết
LT
Xem chi tiết
UP
Xem chi tiết
UP
Xem chi tiết
DN
Xem chi tiết
PN
Xem chi tiết
H24
Xem chi tiết
AT
Xem chi tiết
H24
Xem chi tiết