Ôn tập phương trình bậc hai một ẩn

HM

1) cho hàm số y = (m+5) x + 2m -10. Chứng minh rằng đồ thị hàm số luôn đi qua một điểm cố định với mọi m

NL
16 tháng 8 2021 lúc 0:18

Gọi điểm cố định có tọa độ \(\left(x_0;y_0\right)\)

Khi đó với mọi m ta có:

\(y_0=\left(m+5\right)x_0+2m-10\)

\(\Leftrightarrow m\left(x_0+2\right)+5x_0-y_0-10=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_0+2=0\\5x_0-y_0-10=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_0=-2\\y_0=-20\end{matrix}\right.\)

\(\Rightarrow\) Với mọi m đồ thị hàm số luôn đi qua điểm cố định có tọa độ \(\left(-2;-20\right)\)

Bình luận (0)