Ôn tập cuối năm phần số học

AD

1. Cho các số tự nhiên a, b, c thỏa mãn \(a^2+b^2+c^2=ab+bc+ca\)và a+b+c=3. Tính \(M=a^{2016}+2015b^{2015}+2020c\)

2. cho x>Y>0. Chứng minh \(\frac{x-y}{x+y}< \frac{x^2-y^2}{x^2+y^2}\)

AH
31 tháng 3 2019 lúc 21:41

Bài 1:

Ta có:

\(a^2+b^2+c^2=ab+bc+ac\)

\(\Leftrightarrow a^2+b^2+c^2-ab-bc-ac=0\)

\(\Leftrightarrow 2a^2+2b^2+2c^2-2ab-2bc-2ac=0\)

\(\Leftrightarrow (a-b)^2+(b-c)^2+(c-a)^2=0\)

\((a-b)^2, (b-c)^2, (c-a)^2\geq 0, \forall a,b,c\in\mathbb{R}\). Do đó để tổng của chúng bằng $0$ thì \((a-b)^2=(b-c)^2=(c-a)^2=0\Rightarrow a=b=c\).

Kết hợp với $a+b+c=3$ suy ra $a=b=c=1$

Do đó:

\(M=a^{2016}+2015b^{2015}+2020c=1+2015+2020=4036\)

Bình luận (0)
AH
31 tháng 3 2019 lúc 21:44

Bài 2:

Xét hiệu:

\(\frac{x-y}{x+y}-\frac{x^2-y^2}{x^2+y^2}=(x-y)\left(\frac{1}{x+y}-\frac{x+y}{x^2+y^2}\right)\)

\(=(x-y).\frac{x^2+y^2-(x+y)^2}{(x+y)(x^2+y^2)}=\frac{(x-y)(x^2+y^2-x^2-2xy-y^2)}{(x^2+y^2)(x+y)}\)

\(=\frac{-2xy(x-y)}{(x^2+y^2)(x+y)}\)

\(x>y>0\Rightarrow -2xy(x-y)< 0; (x^2+y^2)(x+y)>0\)

\(\Rightarrow \frac{x-y}{x+y}-\frac{x^2-y^2}{x^2+y^2}=\frac{-2xy(x-y)}{(x^2+y^2)(x+y)}< 0\)

\(\Rightarrow \frac{x-y}{x+y}< \frac{x^2-y^2}{x^2+y^2}\)

Ta có đpcm.

Bình luận (0)

Các câu hỏi tương tự
VT
Xem chi tiết
KH
Xem chi tiết
ND
Xem chi tiết
LK
Xem chi tiết
HN
Xem chi tiết
MD
Xem chi tiết
H24
Xem chi tiết
NA
Xem chi tiết
TN
Xem chi tiết