1: Khi x=36 thì \(A=\dfrac{6+4}{6+2}=\dfrac{10}{8}=\dfrac{5}{4}\)
2: \(B=1\cdot\dfrac{\sqrt{x}+12}{x+16}=\dfrac{\sqrt{x}+12}{x+16}\)
1: Khi x=36 thì \(A=\dfrac{6+4}{6+2}=\dfrac{10}{8}=\dfrac{5}{4}\)
2: \(B=1\cdot\dfrac{\sqrt{x}+12}{x+16}=\dfrac{\sqrt{x}+12}{x+16}\)
Câu 1 (2 điểm).
a) Tính \(\sqrt{64}+\sqrt{16}-2\sqrt{36}\).
b) Rút gọn biểu thức P=\(\left(\dfrac{1}{\sqrt{x}}-\dfrac{2}{1+\sqrt{x}}\right).\dfrac{x+\sqrt{x}}{1-\sqrt{x}}\), với x>0; x\(\ne1\).
Cho biểu thức \(M=\dfrac{\sqrt{x}}{\sqrt{x}-1}-\dfrac{6\sqrt{x}-3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\) với \(x\ge0;x\ne1\)
a. Rút gọn M
b. Tìm số nguyên x để M có giá trị là số nguyên
1.cho biểu thức A=\(\dfrac{\sqrt{x}}{\sqrt{x}-2}-\dfrac{4\sqrt{x}-4}{\sqrt{x}\left(\sqrt{x}-2\right)}\) với x>0,x\(\ne4\)
a.rút gọn biểu thức M
b.tính giá trị của M khi x=3+2\(\sqrt{2}\)
c.tìm giá trị của x để M>0
cho A = \(\dfrac{\sqrt{x}+4}{\sqrt{x}+2x}\) và B = \(\dfrac{\sqrt{x}}{x-4}-\dfrac{2}{\sqrt{x}-2}\)
a, tính giá trị của biểu thức A khi x = 36
b, rút gọn biểu thức P = B : A
Rút gọn: \(Q=\left(\dfrac{\sqrt{x}+1}{\sqrt{x-2}}-\dfrac{2\sqrt{x}}{\sqrt{x}+2}+\dfrac{5\sqrt{x}+2}{4-x}\right):\dfrac{3\sqrt{x}-x}{x+4\sqrt{x}+4}\). Tìm các giá trị nguyên của x để Q âm
cho biểu thức
Q=\(\left(\dfrac{\sqrt{x}+2}{x+2\sqrt{x}+1}-\dfrac{\sqrt{x}-1}{x-1}\right).\dfrac{\sqrt{x}+1}{\sqrt{x}}\)
a. rút gọn biểu thức Q
b.tìm số nguyên x để Q có giá trị nguyên
cho hai biểu thức A=\(\dfrac{2\sqrt{x}-4}{\sqrt{x}-1}\) và B=\(\dfrac{\sqrt{x}}{\sqrt{x}-1}+\dfrac{3}{\sqrt{x}+1}-\dfrac{6\sqrt{x}-4}{x-1}\) với x\(\ge\)0, x\(\ne\)1
a.tính giá trị của A khi x=4
b.rút gọn B
c.so sánh A.B với 5
bài 1: cho biểu thức
M = \(\left(1-\dfrac{4\sqrt{x}}{x-1}+\dfrac{1}{\sqrt{x}-1}\right):\dfrac{x-2\sqrt{x}}{x-1}\)
a, rút gọn M
b, tìm giá trị của x để M = \(\dfrac{1}{2}\)
bài 2: thực hiện phép tính
a,\(\dfrac{1}{3+\sqrt{2}}+\dfrac{1}{3-\sqrt{2}}\)
b, \(\dfrac{2}{3\sqrt{2}-4}-\dfrac{2}{3\sqrt{2}+4}\)
c,\(\dfrac{3}{2\sqrt{3}-3\sqrt{3}}-\dfrac{3}{2\sqrt{3}+3\sqrt{3}}\)
Cho biểu thức: \(A=\left(\dfrac{x+2}{x\sqrt{x}-1}+\dfrac{\sqrt{x}}{x+\sqrt{x}+1}+\dfrac{1}{1-\sqrt{x}}\right):\dfrac{\sqrt{x}-1}{2}\). Tìm tất cả các giá trị của x để biểu thức A nhận giá trị là 1 số nguyên