Ôn tập: Bất phương trình bậc nhất một ẩn

HH

1) cho 3 số nghuyên dương x,y,z thỏa:x+y+z=3

khi \(C=\dfrac{1}{yz}+\dfrac{1}{xz}\) đạt gtrị nhỏ nhất thì (x;y;z)=(...;...;...)

2) biết \(5x^2-5xy+y^2+\dfrac{4}{x^2}=0\) tìm gtrị nhỏ nhất của tích xy

3)cho 2 số a,b thỏa:\(a^2+b^2=4a+2b+540\) tính gtrị lớn nhất của \(P=23a+4b+2013\)

help me !!!! mình cần gấpkhocroi

LF
11 tháng 4 2017 lúc 22:05

Bài 1:

Áp dụng BĐT Cauchy-Schwarz ta có:

\(C=\dfrac{1}{yz}+\dfrac{1}{xz}\ge\dfrac{\left(1+1\right)^2}{xz+yz}=\dfrac{4}{xz+yz}\)

Từ \(x+y+z=3\Rightarrow x+y=3-z\)

\(\Rightarrow C\ge\dfrac{4}{xz+yz}=\dfrac{4}{z\left(x+y\right)}=\dfrac{4}{z\left(3-z\right)}=\dfrac{4}{-z^2+3z}\)

Lại có: \(-z^2+3z=\dfrac{9}{4}-\left(z-\dfrac{3}{2}\right)^2\le\dfrac{9}{4}\)

\(\Rightarrow C\ge\dfrac{4}{-z^2+3z}\ge\dfrac{4}{\dfrac{9}{4}}=\dfrac{16}{9}\)

Đẳng thức xảy ra khi \(x=y=\dfrac{3}{4};z=\dfrac{3}{2}\)

Bài 2:

Từ \(5x^2-5xy+y^2+\dfrac{4}{x^2}=0\)

\(\Leftrightarrow\left(4x^2-4xy+y^2\right)+\left(x^2+\dfrac{4}{x^2}-4\right)+4=xy\)

\(\Leftrightarrow\left(2x-y\right)^2+\left(x-\dfrac{2}{x}\right)^2+4\ge xy\)

Dễ thấy: \(VT\ge4\forall x;y\)\(\Rightarrow VP\ge4\forall x;y\)

Đẳng thức xảy ra khi \(\left(x;y\right)=\left(\sqrt{2};2\sqrt{2}\right);\left(-\sqrt{2};-2\sqrt{2}\right)\)

Bài 3:

Từ \(a^2+b^2=4a+2b+540\)

\(\Leftrightarrow\left(a^2-4a+4\right)+\left(b^2-2b+1\right)=545\)

\(\Leftrightarrow\left(a-2\right)^2+\left(b-1\right)^2=545\)

Áp dụng BĐT Cauchy-Schwarz ta có:

\(\left (P-2063 \right )^2=\left [23(a-2)+4(b-1) \right ]^2\)

\(\leq (23^2+4^2)\left [ (a-2)^2+(b-1)^2 \right ]\)

\(\Rightarrow P\le545+2063=2608\)

Đẳng thức xảy ra khi \(a=25;b=5\)

Bình luận (1)

Các câu hỏi tương tự
TX
Xem chi tiết
NS
Xem chi tiết
LT
Xem chi tiết
NV
Xem chi tiết
TX
Xem chi tiết
H24
Xem chi tiết
NA
Xem chi tiết
LQ
Xem chi tiết
TH
Xem chi tiết