SP

1, a^2+b^2+c^2 >= ab + bc + ca 2, ( a+b+c)*(1/a + 1/b + 1/c) >= 9 3, a/b +b/c + c/a >= 0 a,b,c>0

NM
6 tháng 12 2021 lúc 8:49

\(1,\text{Giả sử }a^2+b^2+c^2\ge ab+bc+ca\\ \Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca\ge0\\ \Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\left(\text{luôn đúng}\right)\)

Vậy \(a^2+b^2+c^2\ge ab+bc+ca\)

Dấu \("="\Leftrightarrow a=b=c\)

\(2,\forall a,b,c>0\\ \text{Áp dụng BĐT cosi: }\left(a+b+c\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\ge3\sqrt[3]{abc}\cdot3\sqrt[3]{\dfrac{1}{abc}}=9\sqrt[3]{\dfrac{abc}{abc}}=9\)

Dấu \("="\Leftrightarrow a=b=c\)

Bình luận (0)

Các câu hỏi tương tự
NT
Xem chi tiết
LL
Xem chi tiết
TM
Xem chi tiết
NN
Xem chi tiết
H24
Xem chi tiết
TT
Xem chi tiết
TD
Xem chi tiết
BF
Xem chi tiết
VK
Xem chi tiết