The problem is to find general formula for this geometric progression.
Example : 1 + 2 + 3 + 4 + ... +8+9 + 10 (reorganized the serie's
terms)
= (10+1) + (2+9) + (3+8) + (4+7) + (5+ 6)
= 11 + 11 + 11 + 11 + 11
= 11 x 5
= 55
So, Sn = 1 + 2 + 3 + ... (n-3) + (n-2) + (n-1) + n
Sn = (n+1) + (n-1 +2) + (n-2 + 3) + etc
Sn = (n + 1) + (n+1) + (n +1) + ...+ (n+1) (n/2) times
Sn = (n/2)(n+1)
Sn = (n^2 + n)/2 is the general formula(easier way to find the
answer)
Example: S(10) = ((10^2) + 10)/2
= (100 + 10)/2
= 55
So, S(1000) = ((1000)^2 + 1000)/2
= (1000000 + 1000)/2
= 1001000/2
= 500500 => answer
dựa vào nhé