KL

(1-1/2).(1-1/3). ... .(1-1/2022).x=1-1/1.2-1/2.3-...-1/2002*2003

NH
18 tháng 1 2024 lúc 22:17

(1 - \(\dfrac{1}{2}\)).(1 - \(\dfrac{1}{3}\))....(1- \(\dfrac{1}{2022}\)).\(x\) =     1 - \(\dfrac{1}{1.2}\) - \(\dfrac{1}{2.3}\)-...-\(\dfrac{1}{2002.2003}\)

(\(\dfrac{2-1}{2}\)).(\(\dfrac{3-1}{3}\))...(\(\dfrac{2022-1}{2022}\)).\(x\) = 1  - (\(\dfrac{1}{1.2}\)+\(\dfrac{1}{2.3}\)+...+\(\dfrac{1}{2002.2003}\))

\(\dfrac{1}{2}\).\(\dfrac{2}{3}\)...\(\dfrac{2021}{2022}\).\(x\) = 1 - (\(\dfrac{1}{1}\) - \(\dfrac{1}{2}\) + \(\dfrac{1}{2}\) - \(\dfrac{1}{3}\) + \(\dfrac{1}{3}\) - \(\dfrac{1}{4}\)+ ... + \(\dfrac{1}{2002}\) - \(\dfrac{1}{2003}\))

   \(\dfrac{1}{2022}\).\(x\)        = 1 - (\(\dfrac{1}{1}\) - \(\dfrac{1}{2003}\))

   \(\dfrac{1}{2022}\).\(x\)        =    \(\dfrac{1}{2003}\)

             \(x\)        = \(\dfrac{1}{2003}\) : \(\dfrac{1}{2022}\)

             \(x\)       =     \(\dfrac{2022}{2003}\)

   

 

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
CP
Xem chi tiết
NL
Xem chi tiết
KK
Xem chi tiết
VH
Xem chi tiết
ND
Xem chi tiết
Xem chi tiết
LH
Xem chi tiết
HN
Xem chi tiết