\(\frac{1}{5.8}+\frac{1}{8.11}+\frac{1}{11.14}+...+\frac{1}{n\left(n+3\right)}=\frac{101}{1540}\)
\(\frac{3}{5.8}+\frac{3}{8.11}+\frac{3}{11.14}+...+\frac{3}{n\left(n+3\right)}=\frac{101}{1540}.3\)
\(\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+...+\frac{1}{n}-\frac{1}{n+3}=\frac{303}{1540}\)
\(\frac{1}{5}-\frac{1}{n+3}=\frac{303}{1540}\)
\(\frac{1}{n+3}=\frac{1}{5}-\frac{303}{1540}=\frac{1}{308}\)
\(\Rightarrow n=308-3=305\)
\(\frac{1}{5.8}+\frac{1}{8.11}+\frac{1}{11.14}+...+\frac{1}{x.\left(n+3\right)}=\frac{101}{1540}\)
\(\frac{1}{3}.\left(\frac{1}{5}-\frac{1}{8}\right)+\frac{1}{3}.\left(\frac{1}{8}-\frac{1}{11}\right)+\frac{1}{3}.\left(\frac{1}{11}-\frac{1}{14}\right)+...+\frac{1}{3}.\left(\frac{1}{x}-\frac{1}{n+3}=\frac{101}{1540}\right)\)
\(\frac{1}{3}.\left(\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+...+\frac{1}{n}-\frac{1}{n+3}\right)=\frac{101}{1540}\)
\(\frac{1}{3}.\left(\frac{1}{5}-\frac{1}{n+3}\right)=\frac{101}{1540}\)
\(\frac{1}{5}-\frac{1}{n+3}=\frac{303}{1540}\)
\(\Rightarrow\frac{1}{n+3}=\frac{1}{5}-\frac{303}{1540}=\frac{1}{308}\)
\(\Rightarrow n=308-3=305\)
kết quả việt đúng nhưng bước bị sai và thiếu,bạn phải làm chi tiết như mình mới đúng
\(\frac{1}{5.8}+\frac{1}{8.11}+\frac{1}{11.14}+...+\frac{1}{n\left(n+3\right)}=\frac{101}{1540}\)
\(\frac{3}{5.8}+\frac{3}{8.11}+\frac{3}{11.14}+...+\frac{3}{n\left(n+3\right)}=\frac{101}{1540}.3\)
\(\frac{1}{5}-\frac{1}{n+3}=\frac{303}{1540}\)
\(\frac{1}{n+3}=\frac{1}{5}-\frac{303}{1540}=\frac{1}{308}\)
\(\Rightarrow n=308-3=305\)