Violympic toán 9

DK
2 tháng 6 2021 lúc 19:15

Áp dụng BĐT svacxo

\(\dfrac{a^n}{\left(b+c\right)^n-a^n}+\dfrac{b^n}{\left(c+a\right)^n-b^n}+\dfrac{c^n}{\left(a+b\right)^n-c^n}\)

\(\dfrac{\left(a^n\right)^2}{\left(ab+ac\right)^n-\left(a^n\right)^2}+\dfrac{\left(b^n\right)^2}{\left(bc+ab\right)^n-\left(b^n\right)^2}+\dfrac{\left(c^n\right)^2}{\left(ac+bc\right)^n-\left(c^n\right)^2}\ge\dfrac{\left(\Sigma a^n\right)^2}{\left(ab+ac\right)^n+\left(ac+bc\right)^n+\left(bc+ab\right)^n-\Sigma\left(a^n\right)^2}\)

\(\ge\dfrac{3\Sigma\left(ab\right)^n}{\Sigma\left(ab+ac\right)^n+\left(ac+bc\right)^n+\left(bc+ab\right)^n-\Sigma\left(a^n\right)^2}\)

Do đó ta cần chứng minh

\(\dfrac{\Sigma\left(ab\right)^n}{\left(ab+ac\right)^n+\left(ac+bc\right)^n+\left(bc+ab\right)^n-\Sigma\left(a^n\right)^2}\ge\dfrac{1}{2^n-1}\)

\(\Leftrightarrow\left(2^n-1\right)\Sigma\left(ab\right)^n\ge\left(ab+ac\right)^n+\left(ac+bc\right)^n+\left(bc+ab\right)^n-\Sigma\left(a^n\right)^2\)

\(\Leftrightarrow\left(2^n-1\right)\Sigma\left(ab\right)^n+\Sigma\left(a^n\right)^2\ge\left(ab+ac\right)^n+\left(ac+bc\right)^n+\left(bc+ab\right)^n\)

Mặt khác \(\Sigma\left(a^n\right)^2\ge\Sigma\left(ab\right)^n\), do đó cần chứng minh

\(2^n\Sigma\left(ab\right)^n\ge\left(ab+ac\right)^n+\left(ac+bc\right)^n+\left(bc+ab\right)^n\)

\(\Leftrightarrow\Sigma\left(ab\right)^n\ge\left(\dfrac{ab+ac}{2}\right)^n+\left(\dfrac{ac+bc}{2}\right)^n+\left(\dfrac{bc+ab}{2}\right)^n\)

Cần chứng minh BĐT phụ sau :

\(\left(\forall a,b\ge0\right)x^{p+q}+y^{p+q}\ge\dfrac{1}{2}\left(x^p+y^p\right)\left(x^q+y^q\right)\)

\(\Leftrightarrow\left(x^p-y^p\right)\left(x^q-y^q\right)\ge0\) ( luôn đúng)

Áp dụng . \(\dfrac{x^n+y^n}{2}\ge\left(\dfrac{x+y}{2}\right)\left(\dfrac{x^{n-1}+y^{n-1}}{2}\right)....\ge\left(\dfrac{x+y}{2}\right)^n\)

Áp dụng . 

\(\left(\dfrac{ab+ac}{2}\right)^n+\left(\dfrac{ac+bc}{2}\right)^n+\left(\dfrac{bc+ab}{2}\right)^n\le\left(\dfrac{\left(ab\right)^n+\left(ac\right)^n}{2}\right)+\left(\dfrac{\left(ac\right)^n+\left(bc\right)^n}{2}\right)+\left(\dfrac{\left(bc\right)^n+\left(ab\right)^n}{2}\right)=\Sigma\left(ab\right)^n\)

Vậy bài toán được chứng minh

Dấu "=" \(a=b=c\)

Bình luận (1)

Các câu hỏi tương tự
LT
Xem chi tiết
MT
Xem chi tiết
LB
Xem chi tiết
HM
Xem chi tiết
NA
Xem chi tiết
AR
Xem chi tiết
H24
Xem chi tiết
LS
Xem chi tiết
TC
Xem chi tiết
LQ
Xem chi tiết