Violympic toán 9

MT

Trong hội trường có một số dãy ghế, mỗi dãy ghế qui định một số người ngồi như nhau. Nếu bớt 2 dãy ghế và mỗi dãy ghế ngồi thêm 1 người thì thêm được 8 chỗ. Nếu thêm 3 dãy ghế và mỗi dãy ghế rút đi 1 người thì giảm 8 chỗ. Tính số dãy ghế trong hội trường?

NL
26 tháng 3 2021 lúc 22:43

Gọi số dãy ghế là x>2 và số người một dãy ghế là y>1

\(\Rightarrow\) Số người dự định: \(xy\)

Khi bớt 2 dãy ghế và mỗi ghế thêm 1 người thì số người ngồi: \(\left(x-2\right)\left(y+1\right)\)

Khi thêm 3 dãy ghế và mỗi dãy ghế bớt 1 người thì số người: \(\left(x+3\right)\left(y-1\right)\)

Theo bài ra ta có hệ: \(\left\{{}\begin{matrix}\left(x-2\right)\left(y+1\right)=xy+8\\\left(x+3\right)\left(y-1\right)=xy-8\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-2y=10\\-x+3y=-5\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=20\\y=5\end{matrix}\right.\)

Vậy có 20 dãy ghế

Bình luận (0)