j.
Đặt $A=\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+....+\frac{1}{23.24.25}$
$2A=\frac{2}{1.2.3}+\frac{2}{2.3.4}+\frac{2}{3.4.5}+....+\frac{2}{23.24.25}$
$=\frac{3-1}{1.2.3}+\frac{4-2}{2.3.4}+\frac{5-3}{3.4.5}+....+\frac{25-23}{23.24.25}$
$=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{23.24}-\frac{1}{24.25}$
$=\frac{1}{2}-\frac{1}{24.25}< \frac{1}{2}$
$\Rightarrow A< \frac{1}{4}$
h/
$\frac{1}{5}+\frac{1}{13}+\frac{1}{14}+\frac{1}{15}+\frac{1}{61}+\frac{1}{62}+\frac{1}{63}$
$< \frac{1}{5}+\frac{3}{12}+\frac{3}{60}=\frac{1}{2}$