`a)B=[2/(sqrtx-1)+1/(sqrtx+3)+(5-x)/((1-sqrtx)(sqrtx+3))].(sqrtx-1)^2(x>0,x\ne9)`
`B=(2(sqrtx+3)+sqrtx-1+x-5)/((sqrtx-1)(sqrtx+3)).(sqrtx-1)^2`
`B=(x+3sqrtx)/((sqrtx-1)(sqrtx+3)).(sqrtx-1)^2`
`B=sqrtx/(sqrtx-1).(sqrtx-1)^2`
`B=sqrtx(sqrtx-1)=x-sqrtx`
`b)B=x-sqrtx+1/4-1/4`
`B=(sqrtx-1/2)^2-1/4>=-1/4`
Dấu "=" xảy ra khi `x=1/4`
Vậy `min_B=-1/4<=>x=1/4`