BN
H24
12 tháng 10 2023 lúc 20:15

`a)x=16` t/m đk, thay vào `A` có: `A=[\sqrt{16}+2]/[\sqrt{16}+5]=2/3`

`b)` Với `x >= 0,x ne 4` có:

`B=[x+20]/[(\sqrt{x}-2)(\sqrt{x}+2)]+[\sqrt{x}-2-6(\sqrt{x}+2)]/[(\sqrt{x}-2)(\sqrt{x}+2)]`

`B=[x+20+\sqrt{x}-2-6\sqrt{x}-12]/[(\sqrt{x}-2)(\sqrt{x}+2)]`

`B=[x-5\sqrt{x}+6]/[(\sqrt{x}-2)(\sqrt{x}+2)]`

`B=[(\sqrt{x}-2)(\sqrt{x}-3)]/[(\sqrt{x}-2)(\sqrt{x}+2)]`

`B=[\sqrt{x}-3]/[\sqrt{x}+2]`   (đpcm)

`c)` Với `x >= 0,x ne 4` có:

`\sqrt{AB} < 1/2`

`<=>\sqrt{[(\sqrt{x}+2)(\sqrt{x}-3)]/[(\sqrt{x}+5)(\sqrt{x}+2)]} < 1/2`

`<=>\sqrt{[\sqrt{x}-3]/[\sqrt{x}+5]} < 1/2`

`<=>[\sqrt{x}-3]/[\sqrt{x}+5] < 1/4`

`<=>[4\sqrt{x}-12-\sqrt{x}-5]/[4(\sqrt{x}+5)] < 0`

`<=>[3\sqrt{x}-17]/[\sqrt{x}+5] < 0`

  Với `x >= 0,x ne 4=>\sqrt{x}+5 > 0`

  `=>3\sqrt{x}-17 < 0`

`<=>\sqrt{x} < 17/3`

`<=>x < 289/9`

  Mà `x >= 0,x ne 4`

   `=>0 <= x < 289/9,x ne 4`.

Bình luận (0)
MH
12 tháng 10 2023 lúc 20:18

a) x=16

=> \(A=\dfrac{\sqrt{16}+2}{\sqrt{16}+5}=\dfrac{6}{9}=\dfrac{2}{3}\)

b) \(B=\dfrac{x+20+\sqrt{x}-2-6\left(\sqrt{x}+2\right)}{x-4}\)

\(=\dfrac{x-5\sqrt{x}+6}{x-4}=\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\dfrac{\sqrt{x}-3}{\sqrt{x+2}}\)

c) \(\sqrt{AB}=\sqrt{\dfrac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x+5}\right)\left(\sqrt{x}+2\right)}}=\sqrt{\dfrac{\sqrt{x}-3}{\sqrt{x}+5}}\left(đk:x\ge9\right)\)

\(\sqrt{AB}< \dfrac{1}{2}\Rightarrow\sqrt{\dfrac{\sqrt{x}-3}{\sqrt{x}+5}}< \dfrac{1}{2}\)

\(\Leftrightarrow\sqrt{x}+5>4\left(\sqrt{x}-3\right)\)

\(\Leftrightarrow3\sqrt{x}< 17\)

\(\Leftrightarrow\sqrt{x}< \dfrac{17}{3}\) \(\Rightarrow0\le x< \dfrac{289}{3}\)

Bình luận (0)