Với `x >= 0,x ne 1` có:
`B=\sqrt{x}/[\sqrt{x}+1]-1/[\sqrt{x}-1]+2/[x-1]`
`B=[\sqrt{x}(\sqrt{x}-1)-\sqrt{x}-1+2]/[(\sqrt{x}-1)(\sqrt{x}+1)]`
`B=[x-\sqrt{x}-\sqrt{x}-1+2]/[(\sqrt{x}-1)(\sqrt{x}+1)]`
`B=[x-2\sqrt{x}+1]/[(\sqrt{x}-1)(\sqrt{x}+1)]`
`B=[(\sqrt{x}-1)^2]/[(\sqrt{x}-1)(\sqrt{x}+1)]=[\sqrt{x}-1]/[\sqrt{x}+1]`