3b) Đặt \(\left\{{}\begin{matrix}b+c-a=x\\a+c-b=y\\a+b-c=z\end{matrix}\right.\left(x,y,z>0do...\right)=>\left\{{}\begin{matrix}a=\dfrac{y+z}{2}\\b=\dfrac{x+z}{2}\\c=\dfrac{x+y}{2}\end{matrix}\right.\)
Áp dụng bổ đề với x,y>0 thì\(\dfrac{1}{x}+\dfrac{1}{y}\ge\dfrac{4}{x+y}\)
2a) Đặt 2005=n. Ta có 1+n2+\(\dfrac{n^2}{\left(n+1\right)^2}\)=(n+1)2-2n+\(\dfrac{n^2}{\left(n+1\right)^2}\)=(1+n-\(\dfrac{n}{n+1}\))2
Tự giải tiếp