CI
DH
14 tháng 2 2023 lúc 21:22

a)

Để pt có nghiệm `x=1`

`<=> 1^2 -2(m+2)*1+4m=0`

`<=> 1 - 2(m+2)+4m=0`

`<=> 1-2m-4+4m=0`

`<=> 2m-3=0`

`<=>m=3/2`

Vậy `m=3/2` thì pt có nghiệm `x=1`

b)

`\Delta'=(m+2)^2 - 1*4m = m^2 + 4m+4-4m=m^2+4>0AAm`

Vậy pt luôn có hai nghiệm phân biệt với mọi `m`

c)

Theo định lý Vi-ét : `{(x_1 + x_2 = 2( m+2)),(x_1x_2 = 4m):}`

`=> ( x_1)^2 + ( x_2)^2 = ( x_1+x_2)^2 - 2x_1x_2=4(m+2)^2-8m`

Mà `( x_1)^2 + ( x_2)^2=28 => 4(m+2)^2-8m=28`

`<=> m^2+4m+4-2m=7`

`<=> m^2+2m+4=7`

`<=> ( m+1)^2=4=(+-2)^2`

`<=> [(m+1=2),(m+1=-2):}<=>[(m=1),(m=-3):}`

Vậy `m in { 1;-3}` thì `( x_1)^2 + ( x_2)^2=28` 

Bình luận (0)

Các câu hỏi tương tự
XD
Xem chi tiết
TT
Xem chi tiết
H24
Xem chi tiết
DD
Xem chi tiết
PB
Xem chi tiết
gh
Xem chi tiết
LL
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
TT
Xem chi tiết