Bài 8: Vị trí tương đối của hai đường tròn (Tiếp)

GE
2 tháng 12 2022 lúc 20:12

lên cả bàn gv chụp lại ngầu đét 

Bình luận (1)
TA
7 tháng 12 2022 lúc 14:02

a) Trong tam giác $BCD$ có $OC=OB=OD (=R)$, do đó tam giác BCD vuông tại D.

b) Áp dụng tính chất hai tiếp tuyến $AD$ và $AB$ cắt nhau tại $A$, ta có $AB=AD$. 

Mặt khác $OB=OD$, do đó $OA$ là đường trung trực của $BD$, từ đây suy ra $OA$ vuông góc với $BD$.

Áp dụng hệ thức lượng trong tam giác vuông $ODA $ vuông tại $D$:

$R^2 = OD^2 = OH . OA$

c) $CD$ cắt $AB$ tại $E$.

Tam giác $ABD$ cân tại $A$(chứng minh trên), suy ra $\widehat{ADB}$ $=$ $\widehat{ABD}$.

Mặt khác, ta có

$\widehat{DEA} + \widehat{DBA}=90^{o}$, do đó $\widehat{DEA} + \widehat{ADB}=90^{o}$.

mà $\widehat{EDA} + \widehat{ADB}=90^{o}$.

Suy ra $\widehat{DEA}=\widehat{EDA}$, suy ra tam giác DEA cân tại A, suy ta $AD=AE=AB$. (*)

Áp dụng định lí Ta-let cho tam giác $CAE$ và tam giác $CBA$.

\(\dfrac{OI}{AB}=\dfrac{IN}{EA}\left(=\dfrac{CI}{CA}\right)\)

Từ đây, do (*), nên ta có $OI=IN$, ta suy ra điều cần chứng minh.

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
SK
Xem chi tiết
MH
Xem chi tiết
UI
Xem chi tiết
NY
Xem chi tiết