d) \(\sqrt{x-1}-\sqrt{x+1}=2\)
\(\sqrt{x-1}=2+\sqrt{x+1}\left(đk:x\ge1\right)\)
\(x-1=5+x+4\sqrt{x+1}\)
\(-6=\sqrt{x+1}\left(\text{vô lý}\right)\)
Vậy phương trình vô nghiệm
e) \(\sqrt{x-1-2\sqrt{x-1}+1}-\sqrt{x-1}=1\)
\(\sqrt{\left(\sqrt{x-1}-1\right)^2}-\sqrt{x-1}=1\left(đk:x\ge1\right)\)
\(\sqrt{x-1}-1-\sqrt{x-1}=1\)
\(-1=1\left(\text{vô lý}\right)\)
Vậy phương trình vô nghiệm
e)
\(\sqrt{x-2\sqrt{x-1}}-\sqrt{x-1}=1\)
<=>\(x-2\sqrt{x-1}=x +2\sqrt{x+1}\)
<=>\(-2\sqrt{x-1}=2\sqrt{x+1}\)(loai)
Vi \(\sqrt{A}\ge0\)