\(a,=4x^2-12xy+9y^2=\left(2x\right)^2-2.2.3xy+\left(3y\right)^2=\left(2x-3y\right)^2\)
\(b,=\left(x^2-3y\right)\left(x^2+3y\right)=\left(x^2\right)^2-\left(3y\right)^2=x^4-9y^2\)
\(c,=x^3+3x^2y+3xy^2+y^3=\left(x+y\right)^3\)
\(d,=\left(x-\dfrac{1}{2}y\right)\left[x^2+\dfrac{1}{2}xy+\left(\dfrac{1}{2}y\right)^2\right]=x^3-\left(\dfrac{1}{2}y\right)^3=x^3-\dfrac{1}{8}y^3\)