a)\(Q=\dfrac{4}{\sqrt{b}-1}+\dfrac{3}{\sqrt{b}-1}-\dfrac{6\sqrt{b}+2}{b-1}\)
\(=\dfrac{4\left(\sqrt{b}+1\right)}{\left(\sqrt{b}-1\right)\left(\sqrt{b}+1\right)}+\dfrac{3\left(\sqrt{b}+1\right)}{\left(\sqrt{b}-1\right)\left(\sqrt{b}+1\right)}-\dfrac{6\sqrt{b}+2}{\left(\sqrt{b}-1\right)\left(\sqrt{b}+1\right)}\)
\(=\dfrac{4\sqrt{b}+4+3\sqrt{b}+3-6\sqrt{b}-2}{\left(\sqrt{b}-1\right)\left(\sqrt{b}+1\right)}\)
\(=\dfrac{\sqrt{b}+5}{b-1}\)
b)Tại b=\(6+2\sqrt{5}\) giá trị của biểu thức là :
\(A=\dfrac{\sqrt{6+2\sqrt{5}}+5}{6+2\sqrt{5}-1}=0.87\)