\(\left(5x-1\right)\left(2x-11\right)=\left(5x-1\right)\left(x+2\right)\)
⇔ \(\left(5x-1\right)\left(2x-11\right)-\left(5x-1\right)\left(x+2\right)=0\)
⇔ \(\left(5x-1\right)\left[\left(2x-11\right)-\left(x+2\right)\right]=0\)
⇔ \(\left(5x-1\right)\left(2x-11-x-2\right)=0\)
⇔ \(\left(5x-1\right)\left(2x-x-11-2\right)=0\)
⇔ \(\left(5x-1\right)\left(x-13\right)=0\)
⇔ \(5x-1=0\) hoặc \(x-13=0\)
⇔ \(5x=1\) hoặc \(x-13=0\)
⇔ \(x=\dfrac{1}{5}\) hoặc \(x=13\)
Vậy phương trình có tập nghiệm \(S=\left\{\dfrac{1}{5};13\right\}\)