Bài 2.1: Khoảng cách từ điểm đến mặt phẳng

AH
17 tháng 2 2021 lúc 13:30

Lời giải:Gọi PTMP cần tìm là (P): $ax+by+cz+d=0$ với $a^2+b^2+c^2\neq 0$

Vì $O,C\in (P)$ nên \(\left\{\begin{matrix} d=0\\ 2a+c=0\end{matrix}\right.(1)\)

\(d(A,(P))=d(B,(P))\Leftrightarrow |4a+2b+c+d|=|3c+d|\)

Kết hợp với $(1)$ suy ra $|2b-c|=|3c|$

$\Rightarrow 2b-c=\pm 3c$

$\Rightarrow b=2c$ hoặc $b=-c$

Nếu $b=2c; a=-\frac{c}{2}$ thì $c\neq 0$ do $a^2+b^2+c^2\neq 0$. (P) có thể viết lại thành: $\frac{-c}{2}x+2cy+cz=0$

$\Leftrightarrow \frac{-c}{2}(x-4y-2z)=0\Leftrightarrow x-4y-2z=0$

Nếu $b=-c; a=-\frac{c}{2}$ thì tương tự ta viết $(P): x+2y-2z=0$

Đáp án D.

 

Bình luận (2)

Các câu hỏi tương tự
NL
Xem chi tiết
TM
Xem chi tiết
NC
Xem chi tiết
NB
Xem chi tiết
PA
Xem chi tiết
VV
Xem chi tiết
HD
Xem chi tiết
LK
Xem chi tiết