cho hình chóp S.ABCD đáy là hình chữ nhật có cạnh AB=a AD=2a. gọi o là giao điểm của đường thẳng AC và BD.G là trọng tâm tam giác SAD biết SO vuông góc với mặt phẳng ABCD, góc giữa đường thẳng SC và mặt phẳng ABCD =60 độ. tính theo a khoảng cách từ điểm G đến mặt phẳng SCD.
Cho hình chóp S ABCD . có đáy ABCD là hình vuông cạnh a , các cạnh bên của hình chóp bằng
nhau và bằng 2a . Tính khoảng cách d từ A đến mặt phẳng (SCD)
Câu 1: Cho hình chóp đều S.ABCD, đáy có cạnh bằng 2a, cạnh bên SA = a\(\sqrt{5}\). Tính khoảng cách giữa BD và SC
Câu 2: Cho hình chóp đều S.ABCD, đáy có cạnh bằng a, cạnh bên SA = 2a. Tính khoảng cách giữa BC và SA
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, AB= a, AD= 2a. Cạnh SA vuông góc với đáy. Cạnh bên SC tạo với đáy góc α thỏa mãn tan α= \(\sqrt{\frac{2}{5}}\). Gọi M là trung điểm BC, N là giao điểm của DM và AC, H là hình chiếu của A lên SB. Tính thể tích chóp S.ABMN và khoảng cách từ H đến mặt phẳng (SDM)
Khẩn cấp. Mọi người giúp đỡ giúp.
Cho hình chóp ABCD có đáy là hình thoi cạnh 2a góc BAD=60° SBC là tam giác đều nằm trên mặt phẳng vuông góc với mặt phẳng đáy. Khoảng cách từ B đến mặt phẳng SCD là:
A. (a√3)/2
B. (a√6)/2
C.3a/2
D.a√6
Cho hình chóp S. ABCD, có đáy là hình vuông cạnh a. Biết tam giác SAB là tam giác đều và mp (SAB) vuông góc với đáy. Tính khoảng cách từ B đến mp (SCD)
Cho hinh chop S.ABCD có dáy là hình thoi tâm O, đương thăng SO vuông góc với mặt phẳng(ABCD). Biết AB=SB=a, SO=\(\frac{a\sqrt{6}}{3}\). Tìm số đo của góc giữa hai mặt phẳng(SAB) và (SAD).
A.300
B.450
C.900
D.600
Cho hình chop S.ABCD có đáy ABCD là hình thang vuông tại A và B, AB = 2Bc=2a, AD= 3a. Hình chiếu vuông góc H của S trên mặt phẳng (ABCD) là trung điểm của cạnh AB. Tính theo a thể tichs khối chốp S.ABCD. và khoảng cách tù A đến mặt phẳng (SAD) biết SD = a căn 3.
Cho hình chóp sabcd đáy là hình vuông cạnh a hình chiếu của S lên đáy trùng với trọng tâm H của tam giác ABD ,SH=4a:3. Gọi I là hình chiếu của H lên SC.Tính khoảng cách từ I đến (SAB)